A Coarse to Fine Framework for Multi-organ Segmentation in Head and Neck Images

被引:1
|
作者
Pu, Yan [1 ]
Kamata, Sei-ichiro [1 ]
Wang, Youjie [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Kitakyushu, Fukuoka, Japan
关键词
Organs segmentation; CT images; Head and neck;
D O I
10.1109/icievicivpr48672.2020.9306647
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radiotherapy is widely used in the treatment of head and neck cancer. Due to the harmfulness of radiation, it is necessary to protect our healthy organs during the radiotherapy. Therefore, the accurate delineation of diseased region and surrounding healthy organs is the precondition for doctors to make the radiation plan. In real life, the delineation work is usually done manually. It is time-consuming and requires high professional skill. A fast and accurate organ segmentation method can greatly improve the efficiency of treatment. Most CT image datasets are 3D volumes and each volume can be divided into a series of 2D slice images. For multi-organ segmentation task, how to generate the stable organ features from CT images is still the plagued problem. For 2D framework, which processes the images slice by slice, the network cannot learn the correlation between continuous slices. It will lead to the loss of spatial information. For 3D framework, which processes the images volume by volume, the patch training is commonly used to against the massive increase of network parameters. The 3D patch will limit the maximum reception field of the network. For the organ, which is larger than the patch size, it is easy to lose global information. To solve these incompatible problems, we proposed a coarse to fine framework to take advantage of both 2D framework and 3D framework. The multi-view coarse network is designed to generate the organ probability maps and the coarse segmentation mask in 2D case. The organ volumes are extracted with the probability maps. These organ volumes are sent to the organ-based fine network to refine the mask of each organ in 3D case. Our proposed method is tested on the Head and Neck Automatic Segmentation Challenge datasets in 2015 and predict for 9 different organs. The result show that our framework performs the lowest error range for most organs and three of them achieve the top evaluation results in comparison with existing methods. Contribution-The main contribution of this paper is to propose a novel two-stage, Coarse to Fine, framework for multi-organ segmentation and verify its effectiveness in head and neck CT images. Contribution-The main contribution of this paper is to propose a novel two-stage, Coarse to Fine, framework for multiorgan segmentation and verify its effectiveness in head and neck CT images.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images
    Mahmood, Faisal
    Borders, Daniel
    Chen, Richard J.
    Mckay, Gregory N.
    Salimian, Kevan J.
    Baras, Alexander
    Durr, Nicholas J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) : 3257 - 3267
  • [22] Continual pretraining for enhanced multi-organ segmentation from CT images
    Yang, Yaqi
    Shen, Chen
    Tang, Yucheng
    Roth, Holger R.
    Oda, Masahiro
    Hayashi, Yuichiro
    Misawa, Kazunari
    Mori, Kensaku
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [23] Residual Mask Scoring Regional Convolutional Neural Network for Multi-Organ Segmentation in Head-and-Neck CT
    Dai, Xianjin
    Lei, Yang
    Wang, Tonghe
    Zhou, Jun
    Roper, Justin
    McDonald, Mark
    Beitler, Jonathan J.
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [24] Simultaneous segmentation of multi-organ in three dimensional abdominal CT images
    Shimizu, A
    Ikegami, T
    Yanagita, T
    Kobatake, H
    Nawano, S
    CARS 2005: Computer Assisted Radiology and Surgery, 2005, 1281 : 1275 - 1275
  • [25] A Multi-Organ Nucleus Segmentation Challenge
    Kumar, Neeraj
    Verma, Ruchika
    Anand, Deepak
    Zhou, Yanning
    Onder, Omer Fahri
    Tsougenis, Efstratios
    Chen, Hao
    Heng, Pheng-Ann
    Li, Jiahui
    Hu, Zhiqiang
    Wang, Yunzhi
    Koohbanani, Navid Alemi
    Jahanifar, Mostafa
    Tajeddin, Neda Zamani
    Gooya, Ali
    Rajpoot, Nasir
    Ren, Xuhua
    Zhou, Sihang
    Wang, Qian
    Shen, Dinggang
    Yang, Cheng-Kun
    Weng, Chi-Hung
    Yu, Wei-Hsiang
    Yeh, Chao-Yuan
    Yang, Shuang
    Xu, Shuoyu
    Yeung, Pak Hei
    Sun, Peng
    Mahbod, Amirreza
    Schaefer, Gerald
    Ellinger, Isabella
    Ecker, Rupert
    Smedby, Orjan
    Wang, Chunliang
    Chidester, Benjamin
    That-Vinh Ton
    Minh-Triet Tran
    Ma, Jian
    Minh N Do
    Graham, Simon
    Quoc Dang Vu
    Kwak, Jin Tae
    Gunda, Akshaykumar
    Chunduri, Raviteja
    Hu, Corey
    Zhou, Xiaoyang
    Lotfi, Dariush
    Safdari, Reza
    Kascenas, Antanas
    O'Neil, Alison
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1380 - 1391
  • [26] An Overview of Abdominal Multi-organ Segmentation
    Li, Qiang
    Song, Hong
    Chen, Lei
    Meng, Xianqi
    Yang, Jian
    Zhang, Le
    CURRENT BIOINFORMATICS, 2020, 15 (08) : 866 - 877
  • [27] Head and neck multi-organ segmentation on dual-energy CT using dual pyramid convolutional neural networks
    Wang, Tonghe
    Lei, Yang
    Roper, Justin
    Ghavidel, Beth
    Beitler, Jonathan J.
    McDonald, Mark
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (11):
  • [28] Head and Neck Multi-Organ Segmentation on Dual-Energy CT Using Dual Pyramid Convolutional Neural Networks
    Wang, T.
    Lei, Y.
    Roper, J.
    Ghavidel, B.
    Beitler, J.
    McDonald, M.
    Bradley, J.
    Liu, T.
    Yang, X.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [29] Rosai-Dorfman disease with multi-organ involvement in head and neck region
    Ünal, ÖF
    Koçan, EG
    Sungur, A
    Kaya, S
    INTERNATIONAL JOURNAL OF PEDIATRIC OTORHINOLARYNGOLOGY, 2004, 68 (05) : 581 - 584
  • [30] Multiscale Dilated UNet for Segmentation of Multi-Organ Nuclei in Digital Histology Images
    Rashid, S. N.
    Fraz, M. M.
    Javed, S.
    2020 IEEE 17TH INTERNATIONAL CONFERENCE ON SMART COMMUNITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEEHONET 2020), 2020, : 68 - 72