Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires

被引:223
|
作者
Guo, Ru [1 ]
Luo, Hang [1 ]
Yan, Mingyang [1 ]
Zhou, Xuefan [1 ]
Zhou, Kechao [1 ]
Zhang, Dou [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金; 湖南省自然科学基金;
关键词
Dielectric composites; Sandwich structure; BaTiO3; nanowires; Breakdown strength; Energy density; ULTRAHIGH DISCHARGE EFFICIENCY; POLYMER NANOCOMPOSITES; STORAGE PERFORMANCE; DIELECTRIC-PROPERTIES; COMPOSITES; PERMITTIVITY; PLATELETS; FLUORIDE); FIELD;
D O I
10.1016/j.nanoen.2020.105412
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low energy densities of polymer-based composites restrict their application in miniaturization and integration of dielectric capacitors. Recently, multilayered hierarchical polymer composite is emerging as a promising route to address the aforementioned challenges. In most cases, high loading (>10 wt%) of ceramic nanoparticles were incorporated into polymer matrix to act as a hard layer for high permittivity. In fact, high-loading filler will inevitably cause agglomerations and deteriorate electric breakdown strength due to the poor dispersion and compatibility between the fillers and matrix. One-dimension nanowires exhibit obvious superiority to increase the permittivity of the nanocomposites due to large dipole moments from its high aspect ratios. In this work, a novel strategy of designing sandwich structured PVDF nanocomposites with low-loading BaTiO3 nanowires was proposed. The motivation is to maintain high breakdown strength by the contribution of barrier effect from the sandwich structure and low-loading of BaTiO3 nanowire fillers. Two sandwich structures including "3-0-3" and "0-3-0" (the digit representing BaTiO3 nanowires mass fraction in each layer) and single-layered BaTiO3/PVDF nanocomposites are fabricated for optimization and comparison. The results revealed that due to the contribution of interfacial polarization and barrier effect between adjacent layers, sandwich-structured BaTiO3/PVDF nanocomposites deliver greatly improved polarization, enhanced electric breakdown strength, and limited leakage current density, which significantly outperform single-layered films. For instance, a high breakdown strength of 519 kV mm 1 with a high maximum polarization of 12.1 mu C cm(-2), and an impressive discharged energy density of 19.1 J cm(-3) accompanied with energy efficiency of 68.6% were achieved even at a very low filler loading of 3 wt% BaTiO3 nanowires. In addition, the potential applications of the nanocomposites for energy storage have been further demonstrated by keeping stable performance after 106 charge-discharge cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Author Correction: Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers
    Dou Zhang
    Xuefan Zhou
    James Roscow
    Kechao Zhou
    Lu Wang
    Hang Luo
    Chris R. Bowen
    Scientific Reports, 10
  • [42] Enhanced energy storage property and dielectric breakdown strength in Li+ doped BaTiO3 ceramics
    Yan, Gui-wei
    Ma, Ming-gang
    Li, Cheng-bo
    Li, Zhi-wei
    Zhong, Xiao-yu
    Yang, Jian
    Wu, Fei
    Chen, Zhi-hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 857
  • [43] Enhanced breakdown strength and energy density of multilayered P (VDF-HFP)/Nd-doped BaTiO3 nanofibers composites
    Wang, Jing
    Yang, Zhong
    Jiang, Jianyong
    Deng, Chaoyong
    Zhu, Kongjun
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [44] High Energy Storage Density of Sandwich-Structured Na0.5Bi0.5TiO3/PVDF Nanocomposites Enhanced by Optimizing the Dimensions of Fillers
    Yi, Zhihui
    Wang, Zhuo
    Nian, Wenwen
    Wang, Tian
    Chen, Haonan
    Cheng, Zhongyang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 13528 - 13537
  • [45] Nanocomposites of Surface-Modified BaTiO3 Nanoparticles Filled Ferroelectric Polymer with Enhanced Energy Density
    Yu, Ke
    Niu, Yujuan
    Zhou, Yongcun
    Bai, Yuanyuan
    Wang, Hong
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (08) : 2519 - 2524
  • [46] Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density
    Wang, H. (hwang@mail.xjtu.edu.cn), 1600, Blackwell Publishing Inc., Postfach 10 11 61, 69451 Weinheim, Boschstrabe 12, 69469 Weinheim, Deutschland, 69469, Germany (96):
  • [47] Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye
    Liu, Xiaofang
    Xiao, Longyin
    Zhang, Yong
    Sun, Huajun
    JOURNAL OF MATERIOMICS, 2020, 6 (02) : 256 - 262
  • [48] Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers
    Baoquan Wan
    Haiyu Li
    Yunhui Xiao
    Zhongbin Pan
    Qiwei Zhang
    Journal of Materials Science & Technology, 2021, 74 (15) : 1 - 10
  • [49] Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers
    Wan, Baoquan
    Li, Haiyu
    Xiao, Yunhui
    Pan, Zhongbin
    Zhang, Qiwei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 74 : 1 - 10
  • [50] BaTiO3 internally decorated hollow porous carbon hybrids as fillers enhancing dielectric and energy storage performance of sandwich-structured polymer composite
    Liang, Xianwen
    Yu, Xuecheng
    Lv, Lulu
    Zhao, Tao
    Luo, Suibin
    Yu, Shuhui
    Sun, Rong
    Wong, Ching-Ping
    Zhu, Pengli
    NANO ENERGY, 2020, 68