Diagram groups, braid groups, and orderability

被引:4
|
作者
Wiest, B [1 ]
机构
[1] Univ Rennes 1, UFR Math, F-35042 Rennes, France
关键词
diagram group; braid group; Thompson group; orderable group;
D O I
10.1142/S0218216503002482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that all diagram groups (in the sense of Guba and Sapir) are left-orderable. The proof is in two steps: firstly, it is proved that all diagram groups inject in a certain braid group on infinitely many strings, and secondly, this group is then shown to be left-orderable.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条
  • [41] On braid groups, homotopy groups, and modular forms
    Cohen, FR
    Advances in Topological Quantum Field Theory, 2004, 179 : 275 - 288
  • [42] Braid groups of imprimitive complex reflection groups
    Corran, Ruth
    Lee, Eon-Kyung
    Lee, Sang-Jin
    JOURNAL OF ALGEBRA, 2015, 427 : 387 - 425
  • [43] On some groups related to the Braid Groups of type A
    Barad, Gefry
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (02): : 47 - 61
  • [44] From braid groups to mapping class groups
    Chen, Lei
    Mukherjea, Aru
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (02)
  • [45] Conjugacy problem for braid groups and Garside groups
    Franco, N
    González-Meneses, J
    JOURNAL OF ALGEBRA, 2003, 266 (01) : 112 - 132
  • [46] Generalized braid groups and mapping class groups
    Labruere, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (08): : 753 - 756
  • [47] From braid groups to mapping class groups
    Lei Chen
    Aru Mukherjea
    Mathematische Zeitschrift, 2023, 303
  • [48] Commensurability invariance for abelian splittings of right-angled Artin groups, braid groups and loop braid groups
    Zaremsky, Matthew C. B.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (03): : 1247 - 1264
  • [49] On braid groups and right-angled Artin groups
    Francis Connolly
    Margaret Doig
    Geometriae Dedicata, 2014, 172 : 179 - 190
  • [50] On braid groups and right-angled Artin groups
    Connolly, Francis
    Doig, Margaret
    GEOMETRIAE DEDICATA, 2014, 172 (01) : 179 - 190