Geometric methods in the representation theory of Hecke algebras and quantum groups

被引:0
|
作者
Ginzburg, V [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These lectures are mainly based on, and form a condensed survey of the book by N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhauser 1997. Various algebras arising naturally in Representation Theory such as the group algebra of a Weyl group, the universal enveloping algebra of a complex semisimple Lie algebra, a quantum group or the Iwahori-Hecke algebra of bi-invariant functions (under convolution) on a p-adic group, are considered. We give a uniform geometric construction of these algebras in terms of homology of an appropriate "Steinberg-type" variety Z (or its modification, such as K-theory or elliptic cohomology of Z, or an equivariant version thereof). We then explain how to obtain a complete classification of finite dimensional irreducible representations of the algebras in question, using our geometric construction and perverse sheaves methods. Similar techniques can be applied to other algebras, e.g. the double-affine Hecke algebras, elliptic algebras, quantum toroidal algebras.
引用
收藏
页码:127 / 183
页数:57
相关论文
共 50 条
  • [31] Quantum affine algebras and affine Hecke algebras
    Chari, V
    Pressley, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 295 - 326
  • [32] Quiver Hecke algebras for alternating groups
    Boys, Clinton
    Mathas, Andrew
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 897 - 937
  • [33] REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS
    KAZHDAN, D
    LUSZTIG, G
    INVENTIONES MATHEMATICAE, 1979, 53 (02) : 165 - 184
  • [34] HECKE ALGEBRAS AND INVOLUTIONS IN WEYL GROUPS
    Lusztig, George
    Vogan, David A., Jr.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2012, 7 (03): : 323 - 354
  • [35] Quiver Hecke algebras for alternating groups
    Clinton Boys
    Andrew Mathas
    Mathematische Zeitschrift, 2017, 285 : 897 - 937
  • [36] Quantum reduction and representation theory of superconformal algebras
    Kac, VG
    Wakimoto, M
    ADVANCES IN MATHEMATICS, 2004, 185 (02) : 400 - 458
  • [37] Category of trees in representation theory of quantum algebras
    N. M. Moskaliuk
    S. S. Moskaliuk
    Physics of Atomic Nuclei, 2013, 76 : 1257 - 1267
  • [38] Category of trees in representation theory of quantum algebras
    Moskaliuk, N. M.
    Moskaliuk, S. S.
    PHYSICS OF ATOMIC NUCLEI, 2013, 76 (10) : 1257 - 1267
  • [39] Complex reflection groups, braid groups, Hecke algebras
    Broue, M
    Malle, G
    Rouquier, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 500 : 127 - 190
  • [40] Representation type for block algebras of Hecke algebras of classical type
    Ariki, Susumu
    ADVANCES IN MATHEMATICS, 2017, 317 : 823 - 845