Asymptotically finite dimensional pullback behaviour of non-autonomous PDEs

被引:4
|
作者
Langa, JA [1 ]
机构
[1] Univ Sevilla, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
D O I
10.1007/s00013-003-0026-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behaviour of general non-autonomous partial differential equations can be described using the concept of pullback attractor. This is, under suitable hypotheses, a time-dependent family of finite-dimensional compact sets. In this work we investigate how this finite-dimensional dynamics on the attractor determines the asymptotic behaviour of non-autonomous PDEs.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 50 条
  • [21] Pullback attractors for a class of non-autonomous nonclassical diffusion equations
    Cung The Anh
    Tang Quoc Bao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 399 - 412
  • [22] Pullback attractor of non-autonomous parabolic equations with time delays
    Li, Jin
    Huang, Jian-Hua
    Zhu, Jian-Min
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2009, 31 (02): : 126 - 130
  • [23] On pullback attractor for non-autonomous weakly dissipative wave equations
    Yan, Xingjie
    Zhong, Chengkui
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (01): : 97 - 108
  • [24] Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    NONLINEARITY, 2012, 25 (04) : 905 - 930
  • [25] Pullback dynamics for a class of non-autonomous Lamé thermoelastic system
    Flank D. M. Bezerra
    Vando Narciso
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [26] Pullback attractors for the non-autonomous coupled suspension bridge equations
    Kang, Jum-Ran
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8747 - 8758
  • [27] Pullback dynamics for a class of non-autonomous Lame thermoelastic system
    Bezerra, Flank D. M.
    Narciso, Vando
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):
  • [28] STRUCTURE OF THE PULLBACK ATTRACTOR FOR A NON-AUTONOMOUS SCALAR DIFFERENTIAL INCLUSION
    Caraballo, T.
    Langa, J. A.
    Valero, J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (04): : 979 - 994
  • [29] Pullback D-attractors of the three-dimensional non-autonomous micropolar equations with damping
    Yang, Xiaojie
    Liu, Hui
    Deng, Haiyun
    Sun, Chengfeng
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 314 - 334
  • [30] PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS
    孙文龙
    黎野平
    Acta Mathematica Scientia, 2018, (04) : 1370 - 1392