Statistical process monitoring using an empirical Bayes multivariate process control chart

被引:7
|
作者
Feltz, CJ [1 ]
Shiau, JJH
机构
[1] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
[2] Natl Chiao Tung Univ, Inst Stat, Hsinchu, Taiwan
关键词
multivariate; quality control; on-line;
D O I
10.1002/qre.393
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we describe the theory underlying an empirical Bayesian approach to monitoring two or more process characteristics simultaneously. If the, data is continuous and multivariate in nature, often the multivariate normal distribution can be used to model the process. Then, using Bayesian theory: we develop techniques to implement empirical Bayes process monitoring of the multivariable process. Lastly, an example is given to illustrate the use of our techniques. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
下载
收藏
页码:119 / 124
页数:6
相关论文
共 50 条
  • [31] Integrating multivariate engineering process control and multivariate statistical process control
    Yang, Ling
    Shen, Shey-Huei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 29 (1-2): : 129 - 136
  • [32] Automated visual inspection expert system for multivariate statistical process control chart
    Lyu, JrJung
    Chen, MingNan
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 5113 - 5118
  • [33] Optimum variable-dimension EWMA chart for multivariate statistical process control
    Epprecht, Eugenio K.
    Aparisi, Francisco
    Ruiz, Omar
    QUALITY ENGINEERING, 2018, 30 (02) : 268 - 282
  • [34] Multivariate Statistical Process Control in Etching Process
    Kai, Xie
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2010 (CSTIC 2010), 2010, 27 (01): : 985 - 991
  • [35] Empirical Bayes Prediction for an Attribute Control Chart in Quality Monitoring
    Supharakonsakun, Yadpirun
    IEEE Access, 2024, 12 : 160784 - 160793
  • [36] Multivariate statistical process control for autocorrelated process
    School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
    Shanghai Jiaotong Daxue Xuebao, 2008, 3 (496-499):
  • [37] Industrial use of multivariate statistical analysis for process monitoring and control
    Champagne, M
    Dudzic, M
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 594 - 599
  • [38] Monitoring of overall equipment effectiveness by multivariate statistical process control
    Mjimer, Imane
    Aoula, ES-Saadia
    Achouyab, El Hassan
    INTERNATIONAL JOURNAL OF LEAN SIX SIGMA, 2022, 13 (04) : 847 - 862
  • [39] Review of Multivariate Statistical Process Monitoring
    Xie, Xiang
    Shi, Hongbo
    Yang, Wen
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 4201 - 4208
  • [40] A new multivariate control chart for monitoring the quality of a process with the aid of auxiliary information
    Chiang, Jyun-You
    Tsai, Tzong-Ru
    Pham, Hoang
    Yu, Kaizhi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (03) : 645 - 666