Soliton solutions of the nonlinear Schrodinger equation with nonlocal Coulomb and Yukawa interactions

被引:6
|
作者
Hartmann, Betti [1 ]
Zakrzewski, Wojtek J.
机构
[1] Int Univ Bremen, Sch Sci & Engn, D-28725 Bremen, Germany
[2] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
D O I
10.1016/j.physleta.2007.02.070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the nonlinear Schrodinger equation in (1 + 1). dimensions in which the nonlinear term is taken in the form of a nonlocal interaction of the Coulomb or Yukawa-type. We solve the equation numerically and find that, for all values of the nonlocal coupling constant, and in all cases, the equation possesses solitonic solutions. We show that our results, for the dependence of the height of the soliton on the coupling constant, are in good agreement with the predictions based on an analytic treatment in which the soliton is approximated by a Gaussian. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:540 / 544
页数:5
相关论文
共 50 条
  • [41] Asymptotic soliton train solutions of the defocusing nonlinear Schrodinger equation
    Kamchatnov, AM
    Kraenkel, RA
    Umarov, BA
    [J]. PHYSICAL REVIEW E, 2002, 66 (03):
  • [42] New visions of the soliton solutions to the modified nonlinear Schrodinger equation
    Bekir, Ahmet
    Zahran, Emad H. M.
    [J]. OPTIK, 2021, 232
  • [43] Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrodinger Equation
    Wang, Bao
    Zhang, Zhao
    Li, Biao
    [J]. CHINESE PHYSICS LETTERS, 2020, 37 (03)
  • [44] Invariant soliton solutions for the coupled nonlinear Schrodinger type equation
    Malik, Sandeep
    Kumar, Sachin
    Nisar, Kottakkaran Sooppy
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 97 - 105
  • [45] SOLITON SOLUTIONS OF THE NEGATIVE-ORDER NONLINEAR SCHRODINGER EQUATION
    Urazboev, G. U.
    Baltaeva, I. I.
    Babadjanova, A. K.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 219 (02) : 761 - 769
  • [46] SOLITON AND ELLIPTICAL PERIODIC SOLUTIONS TO THE MODIFIED NONLINEAR SCHRODINGER EQUATION
    LIU Xiqiang(Department of Mathematics
    [J]. Journal of Systems Science & Complexity, 1999, (03) : 263 - 269
  • [47] Gaussian soliton solutions to a variety of nonlinear logarithmic Schrodinger equation
    Wazwaz, Abdul-Majid
    El-Tantawy, S. A.
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (14) : 1909 - 1917
  • [48] The novel soliton solutions for the conformable perturbed nonlinear Schrodinger equation
    Yepez-Martinez, Huitzilin
    Pashrashid, Arash
    Francisco Gomez-Aguilar, Jose
    Akinyemi, Lanre
    Rezazadeh, Hadi
    [J]. MODERN PHYSICS LETTERS B, 2022, 36 (08):
  • [49] SOLITON-SOLUTIONS FOR A PERTURBED NONLINEAR SCHRODINGER-EQUATION
    MIHALACHE, D
    TORNER, L
    MOLDOVEANU, F
    PANOIU, NC
    TRUTA, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (17): : L757 - L765
  • [50] Soliton solutions of an integrable nonlinear Schrodinger equation with quintic terms
    Chowdury, A.
    Kedziora, D. J.
    Ankiewicz, A.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2014, 90 (03)