Federated Learning with Position-Aware Neurons

被引:11
|
作者
Li, Xin-Chun [1 ]
Xu, Yi-Chu [1 ]
Song, Shaoming [2 ]
Li, Bingshuai [2 ]
Li, Yinchuan [2 ]
Shao, Yunfeng [2 ]
Zhan, De-Chuan [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00984
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated Learning (FL) fuses collaborative models from local nodes without centralizing users' data. The permutation invariance property of neural networks and the non-i.i.d. data across clients make the locally updated parameters imprecisely aligned, disabling the coordinate-based parameter averaging. Traditional neurons do not explicitly consider position information. Hence, we propose Position-Aware Neurons (PANs) as an alternative, fusing position-related values (i.e., position encodings) into neuron outputs. PANs couple themselves to their positions and minimize the possibility of dislocation, even updating on heterogeneous data. We turn on/off PANs to disable/enable the permutation invariance property of neural networks. PANs are tightly coupled with positions when applied to FL, making parameters across clients pre-aligned and facilitating coordinate-based parameter averaging. PANs are algorithm-agnostic and could universally improve existing FL algorithms. Furthermore, "FL with PANs" is simple to implement and computationally friendly.
引用
收藏
页码:10072 / 10081
页数:10
相关论文
共 50 条
  • [1] Position-aware multimedia mobile learning systems in museums
    Chou, LD
    Wu, CH
    Ho, SP
    Lee, CC
    [J]. Proceedings of the IASTED International Conference on Web-Based Education, 2004, : 148 - 150
  • [2] Position-Aware ListMLE: A Sequential Learning Process for Ranking
    Lan, Yanyan
    Zhu, Yadong
    Guo, Jiafeng
    Niu, Shuzi
    Cheng, Xueqi
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 449 - 458
  • [3] Position-Aware Masked Autoencoder for Histopathology WSI Representation Learning
    Wu, Kun
    Zheng, Yushan
    Shi, Jun
    Xie, Fengying
    Jiang, Zhiguo
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 714 - 724
  • [4] Position-Aware Cuckoo Filters
    Kwon, Minseok
    Shankar, Vijay
    Reviriego, Pedro
    [J]. PROCEEDINGS OF THE 2018 SYMPOSIUM ON ARCHITECTURES FOR NETWORKING AND COMMUNICATIONS SYSTEMS (ANCS '18), 2018, : 151 - 153
  • [5] Learning Perceptual Position-Aware Shapelets for Time Series Classification
    Le, Xuan-May
    Tran, Minh-Tuan
    Huynh, Van-Nam
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI, 2023, 13718 : 53 - 69
  • [6] Position-Aware Recalibration Module: Learning From Feature Semantics and Feature Position
    Ma, Xu
    Fu, Song
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 797 - 803
  • [7] A position-aware transformer for image captioning
    Deng, Zelin
    Zhou, Bo
    He, Pei
    Huang, Jianfeng
    Alfarraj, Osama
    Tolba, Amr
    [J]. Computers, Materials and Continua, 2021, 70 (01): : 2005 - 2021
  • [8] Position-aware home monitoring system
    Vasilateanu, A.
    Mihailescu, M. N.
    [J]. 2018 IEEE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES 2018), 2018, : 93 - 96
  • [9] Position-aware service provision with RFID
    Genco, Alessandro
    Sorce, Salvatore
    Battaglia, Rossella
    La Spina, Eleonora
    [J]. 4TH INTERNATIONAL INDUSTRIAL SIMULATION CONFERENCE 2006, 2006, : 486 - +
  • [10] Position-aware pushing and grasping synergy with deep reinforcement learning in clutter
    Zhao, Min
    Zuo, Guoyu
    Yu, Shuangyue
    Gong, Daoxiong
    Wang, Zihao
    Sie, Ouattara
    [J]. CAAI Transactions on Intelligence Technology, 2023,