Lie symmetry preservation and shock-capturing methods

被引:5
|
作者
Ran, Zheng [1 ]
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
关键词
difference scheme; symmetry; shock-capturing method;
D O I
10.1137/050648201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that some traditional shock-capturing schemes, including Godunov- or Roe-type schemes, generate downstream oscillatory wave patterns that cannot be effectively dampened by the dissipation methods they provide. The theme of this paper is to understand the formation and behavior at these upstream/downstream patterns from the point view of the symmetry inherent in the PDE. This paper investigates symmetry breaking and spatial oscillations in finite difference solutions for the inviscid Burgers and one-dimensional Navier-Stokes shock equations using the Lax-Wendroff, TVD, and nonoscillatory, nonfree parameter dissipative schemes. Symmetry breaking is considered as a candidate for the inherent cause of the nonphysical oscillations in the vicinity of the shock.
引用
收藏
页码:325 / 343
页数:19
相关论文
共 50 条
  • [21] On the convergence of shock-capturing difference schemes
    O. A. Kovyrkina
    V. V. Ostapenko
    [J]. Doklady Mathematics, 2010, 82 : 599 - 603
  • [22] On the practical accuracy of shock-capturing schemes
    Kovyrkina O.A.
    Ostapenko V.V.
    [J]. Mathematical Models and Computer Simulations, 2014, 6 (2) : 183 - 191
  • [23] Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes
    Fleischmann, Nico
    Adami, Stefan
    Adams, Nikolaus A.
    [J]. COMPUTERS & FLUIDS, 2019, 189 : 94 - 107
  • [24] MODERN HIGH-RESOLUTION SHOCK-CAPTURING METHODS FOR STRUCTURE EVOLUTION IN COSMOLOGY
    QUILIS, V
    IBANEZ, JM
    SAEZ, D
    [J]. ASTRONOMY & ASTROPHYSICS, 1994, 286 (01): : 1 - 16
  • [25] A simple shock-capturing technique for high-order discontinuous Galerkin methods
    Huerta, A.
    Casoni, E.
    Peraire, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (10) : 1614 - 1632
  • [26] Shock-capturing streamline diffusion finite element methods for nonlinear conservation laws
    Johnson, C.
    Szepessy, A.
    [J]. American Society of Mechanical Engineers, Applied Mechanics Division, AMD, 1988, 95 : 101 - 108
  • [27] SEMI-IMPLICIT AND FULLY IMPLICIT SHOCK-CAPTURING METHODS FOR NONEQUILIBRIUM FLOWS
    YEE, HC
    SHINN, JL
    [J]. AIAA JOURNAL, 1989, 27 (03) : 299 - 307
  • [28] High-order shock-capturing methods for modeling dynamics of the solar atmosphere
    Bryson, S
    Kosovichev, A
    Levy, D
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 201 (1-2) : 1 - 26
  • [29] Effect of Shock-Capturing Errors on Turbulence Statistics
    Larsson, Johan
    [J]. AIAA JOURNAL, 2010, 48 (07) : 1554 - 1557
  • [30] Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics
    Barmin, AA
    Kulikovskiy, AG
    Pogorelov, NV
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) : 77 - 90