Data-driven understanding and refinement of schema mappings

被引:51
|
作者
Yan, LL [1 ]
Miller, RJ
Haas, LM
Fagin, R
机构
[1] IBM Corp, San Jose, CA 95193 USA
[2] Univ Toronto, Toronto, ON, Canada
关键词
D O I
10.1145/376284.375729
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
At the heart of many data-intensive applications is the problem of quickly and accurately transforming data into a new form. Database researchers have long advocated the use of declarative queries for this process. Yet tools for creating, managing and understanding the complex queries necessary for data transformation are still too primitive to permit widespread adoption of this approach. We present a new framework that uses data examples as the basis for understanding and refining declarative schema mappings, We identify a small set of intuitive operators for manipulating examples. These operators permit a user to follow and refine an example by walking through a data source. We show that our operators are powerful enough both to identify a large class of schema mappings and to distinguish effectively between alternative schema mappings. These operators permit a user to quickly and intuitively build and refine complex data transformation queries that map one data source into another.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 50 条
  • [31] Symbolic Regression for Data-Driven Dynamic Model Refinement in Power Systems
    Saric, Andrija T.
    Saric, Aleksandar A.
    Transtrum, Mark K.
    Stankovic, Aleksandar M.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2390 - 2402
  • [32] Improving Forecasting Ability of GITM Using Data-Driven Model Refinement
    Ponder, Brandon M.
    Ridley, Aaron J.
    Goel, Ankit
    Bernstein, D. S.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (03):
  • [33] Executable schema mappings for statistical data processing
    Atzeni, Paolo
    Bellomarini, Luigi
    Bugiotti, Francesca
    De Leonardis, Marco
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2018, 36 (02) : 265 - 300
  • [34] Characterizing Schema Mappings via Data Examples
    Alexe, Bogdan
    Kolaitis, Phokion G.
    Tan, Wang-Chiew
    [J]. PODS 2010: PROCEEDINGS OF THE TWENTY-NINTH ACM SIGMOD-SIGACT-SIGART SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2010, : 261 - 271
  • [35] Executable schema mappings for statistical data processing
    Paolo Atzeni
    Luigi Bellomarini
    Francesca Bugiotti
    Marco De Leonardis
    [J]. Distributed and Parallel Databases, 2018, 36 : 265 - 300
  • [36] Characterizing Schema Mappings via Data Examples
    Alexe, Bogdan
    Ten Cate, Balder
    Kolaitis, Phokion G.
    Tan, Wang-Chiew
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 2011, 36 (04):
  • [37] Practical data refinement for the Z schema calculus
    Groves, L
    [J]. ZB 2005: FORMAL SPECIFICATION AND DEVELOPMENT IN Z AND B, PROCEEDINGS, 2005, 3455 : 393 - 413
  • [38] Schema and data-driven influences in the hollow-face illusion: Experiments and model.
    Kaur, M
    Papathomas, TV
    DeCarlo, D
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2000, 41 (04) : S224 - S224
  • [39] Understanding Risk and Implementing Data-Driven Solutions for Firearm Suicide
    Anestis, Michael D.
    Bond, Allison E.
    Bandel, Shelby L.
    [J]. ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE, 2022, 704 (01): : 204 - 222
  • [40] Understanding Smart City-A Data-Driven Literature Review
    Stuebinger, Johannes
    Schneider, Lucas
    [J]. SUSTAINABILITY, 2020, 12 (20) : 1 - 23