The construction of extensible polynomial lattice rules with small weighted star discrepancy

被引:6
|
作者
Dick, Josef [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1090/S0025-5718-07-01984-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a construction algorithm for extensible polynomial lattice rules and we prove that the construction algorithm yields generating vectors of polynomials which are optimal for a range of moduli chosen in advance. The construction algorithm uses a sieve where the generating vectors are extended by one coefficient in each component at each step and where one keeps a certain number of good ones and discards the rest. We also show that the construction can be done component by component.
引用
收藏
页码:2077 / 2085
页数:9
相关论文
共 50 条
  • [31] LATTICE RULES FOR MULTIPLE INTEGRATION AND DISCREPANCY
    NIEDERREITER, H
    SLOAN, IH
    [J]. MATHEMATICS OF COMPUTATION, 1990, 54 (189) : 303 - 312
  • [32] Low discrepancy polynomial lattice point sets
    Kritzer, Peter
    Pillichshammer, Friedrich
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (11) : 2510 - 2534
  • [33] Component by component construction of rank-1 lattice rules having O(n-1(ln(n))d) star discrepancy
    Joe, S
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 293 - 298
  • [34] Tractability results for the weighted star-discrepancy
    Aistleitner, Christoph
    [J]. JOURNAL OF COMPLEXITY, 2014, 30 (04) : 381 - 391
  • [35] Some discrepancy theorems in the theory of weighted polynomial approximation
    Blatt, HP
    Mhaskar, HN
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 219 (02) : 312 - 330
  • [36] RICHARDSON EXTRAPOLATION OF POLYNOMIAL LATTICE RULES
    Dick, Josef
    Goda, Takashi
    Yoshiki, Takehito
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 44 - 69
  • [37] Discrepancy of higher rank polynomial lattice point sets
    Greslehner, Julia
    Pillichshammer, Friedrich
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2012, 18 (01): : 79 - 108
  • [38] Weighted star discrepancy of digital nets in prime bases
    Dick, J
    Niederreiter, H
    Pillichshammer, F
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2004, 2006, : 77 - +
  • [39] Tractability properties of the weighted star discrepancy of the Halton sequence
    Hinrichs, Aicke
    Pillichshammer, Friedrich
    Tezuka, Shu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 46 - 54
  • [40] Tractability properties of the weighted star discrepancy of regular grids
    Pillichshammer, Friedrich
    [J]. JOURNAL OF COMPLEXITY, 2018, 46 : 103 - 112