Series of iterated quantum stochastic integrals

被引:0
|
作者
Attal, S
Hudson, RL
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
[2] Nottingham Trent Univ, Dept Math, Nottingham NG1 4BU, England
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider series of iterated non-commutative stochastic integrals of scalar operators on the boson Fock space. We give a sufficient condition for these series to converge and to define a reasonable operator. An application of this criterion gives a condition for the convergence of some formal series of generalized integrator processes such as considered in [CEH].
引用
收藏
页码:157 / 170
页数:14
相关论文
共 50 条
  • [41] An analysis of approximation algorithms for iterated stochastic integrals and a Julia and Matlab simulation toolbox
    Felix Kastner
    Andreas Rößler
    [J]. Numerical Algorithms, 2023, 93 : 27 - 66
  • [42] Iterated binomial sums and their associated iterated integrals
    Ablinger, J.
    Bluemlein, J.
    Raab, C. G.
    Schneider, C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [43] Stochastic path integrals and open quantum systems
    Strunz, WT
    [J]. PHYSICAL REVIEW A, 1996, 54 (04): : 2664 - 2674
  • [44] QUANTUM STOCHASTIC INTEGRALS UNDER STANDING HYPOTHESES
    BARNETT, C
    STREATER, RF
    WILDE, IF
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 127 (01) : 181 - 192
  • [45] Symmetrized double quantum stochastic product integrals
    Hudson, RL
    Pulmannová, S
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) : 8249 - 8262
  • [46] Generating series of all modular graph forms from iterated Eisenstein integrals
    Jan E. Gerken
    Axel Kleinschmidt
    Oliver Schlotterer
    [J]. Journal of High Energy Physics, 2020
  • [47] Feynman integrals and iterated integrals of modular forms
    Adams, Luise
    Weinzierl, Stefan
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) : 193 - 251
  • [48] Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
    Johannes Broedel
    Claude Duhr
    Falko Dulat
    Brenda Penante
    Lorenzo Tancredi
    [J]. Journal of High Energy Physics, 2018
  • [49] Generating series of all modular graph forms from iterated Eisenstein integrals
    Gerken, Jan E.
    Kleinschmidt, Axel
    Schlotterer, Oliver
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)
  • [50] Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):