Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

被引:139
|
作者
Phillips, Carolyn L. [1 ]
Anderson, Joshua A. [1 ]
Glotzer, Sharon C. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
GPU; Brownian Dynamics; Dissipative Particle Dynamics; Molecular dynamics; Random number generation;
D O I
10.1016/j.jcp.2011.05.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) CPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7191 / 7201
页数:11
相关论文
共 50 条
  • [21] Dissipative particle dynamics simulations on inversion dynamics of spherical micelles
    Hong, Bingbing
    Qiu, Feng
    Zhang, Hongdong
    Yang, Yuliang
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (24):
  • [22] Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices
    Duong-Hong, Duc
    Wang, Jian-Sheng
    Liu, G. R.
    Chen, Yu Zong
    Han, Jongyoon
    Hadjiconstantinou, Nicolas G.
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2008, 4 (03) : 219 - 225
  • [23] Reptational dynamics in dissipative particle dynamics simulations of polymer melts
    Nikunen, Petri
    Vattulainen, Ilpo
    Karttunen, Mikko
    [J]. PHYSICAL REVIEW E, 2007, 75 (03)
  • [24] Efficient pseudo-random number generators for biomolecular simulations on graphics processors
    Barsegov, Valeri A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [25] Dissipative particle dynamics simulations of polymer brushes: Comparison with molecular dynamics simulations
    Pal, Sandeep
    Seidel, Christian
    [J]. MACROMOLECULAR THEORY AND SIMULATIONS, 2006, 15 (09) : 668 - 673
  • [26] Brownian dynamics simulations of filled particle gels
    Wijmans, CM
    Dickinson, E
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1998, 94 (01): : 129 - 137
  • [27] Testing and selecting lightweight pseudo-random number generators for IoT devices
    Parisot, Augusto
    Bento, Lucila M. S.
    Machado, Raphael C. S.
    [J]. 2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (IEEE METROIND4.0 & IOT), 2021, : 715 - 720
  • [28] Nonequilibrium Simulations of Lamellae Forming Block Copolymers under Steady Shear: A Comparison of Dissipative Particle Dynamics and Brownian Dynamics
    Peters, Brandon L.
    Ramirez-Hernandez, Abelardo
    Pike, Darin Q.
    Mueller, Marcus
    de Pablo, Juan J.
    [J]. MACROMOLECULES, 2012, 45 (19) : 8109 - 8116
  • [29] Resolution effects in Dissipative Particle Dynamics simulations
    Boek, ES
    van der Schoot, P
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1307 - 1318
  • [30] Numerical simulations of Brownian suspensions using Smoothed Dissipative Particle Dynamics: Diffusion, rheology and microstructure
    Vazquez-Quesada, Adolfo
    Ellero, Marco
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2023, 317