Whole transcriptome analyis of human lung tissue to identify COPD-associated genes

被引:10
|
作者
Zhu, Yizhang [1 ,2 ]
Zhou, Aiyuan [3 ]
Li, Qiuyu [4 ]
机构
[1] Peking Univ, Hlth Sci Ctr, Sch Basic Med Sci, Inst Syst Biomed, Beijing 100191, Peoples R China
[2] Peking Univ, Hlth Sci Ctr, Sch Basic Med Sci, Dept Pathol, Beijing 100191, Peoples R China
[3] Cent South Univ, Xiangya Hosp 2, Dept Resp & Crit Care Med, Changsha 410011, Hunan, Peoples R China
[4] Peking Univ, Hosp 3, Dept Resp & Crit Care Med, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
COPD; RNA-seq; GTEx; Transcriptome analysis; Lung tissue; OBSTRUCTIVE PULMONARY-DISEASE; FREE LIGHT-CHAINS; CIGARETTE-SMOKE; PATHOGENESIS; PACKAGE; BIOLOGY;
D O I
10.1016/j.ygeno.2020.05.025
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Identification of the dysfunctional genes in human lung from patients with Chronic obstructive pulmonary disease (COPD) will help understand the pathology of this disease. Here, using transcriptomic data of lung tissue for 91 COPD cases and 182 matched healthy controls from the Genotype-Tissue Expression (GTEx) database. we identified 1359 significant differentially expressed genes (DEG) with 707 upregulated and 602 downregulated respectively. We evaluated the identified DEGs in an independent microarray cohort of 219 COPD and 108 controls, demonstrating the robustness of our result. Functional annotation of COPD-associated genes high-lighted the activation of complement cascade, dysregulation of inflammatory response and extracellular matrix organization in the COPD patients. In addition, we identified several novel key-hub genes involved in the COPD pathogenesis using a network analysis method. To our knowledge, our analysis is currently the largest RNA-seq based COPD transcriptomic analyses, providing great resource for the molecular research in the COPD community.
引用
收藏
页码:3135 / 3141
页数:7
相关论文
共 50 条
  • [21] Large-scale whole exome sequencing studies identify two genes,CTSL and APOE, associated with lung cancer
    Xu, Jingxiong
    Xu, Wei
    Choi, Jiyeon
    Brhane, Yonathan
    Christiani, David C.
    Kothari, Jui
    Mckay, James
    Field, John K.
    Davies, Michael P. A.
    Liu, Geoffrey
    Amos, Christopher I.
    Hung, Rayjean J.
    Briollais, Laurent
    [J]. PLOS GENETICS, 2023, 19 (09):
  • [22] CROSS-TISSUE AND MURINE-HUMAN COMPARATIVE TRANSCRIPTOME ANALYSES IDENTIFY TARGETABLE GENES FOR HUMAN SYSTEMIC LUPUS ERYTHEMATOUS AND LUPUS NEPHRITIS
    Frangou, Eleni
    Garantziotis, Panagiotis
    Grigoriou, Maria
    Banos, Angelos
    Panousis, Nikolaos
    Dermitzakis, Emmanouil
    Bertsias, George
    Boumpas, Dimitrios T.
    Filia, Anastasia
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2020, 35 : 664 - 664
  • [23] Integration of Transcriptome and Whole Genomic Resequencing Data to Identify Key Genes Affecting Swine Fat Deposition
    Xing, Kai
    Zhu, Feng
    Zhai, Liwei
    Liu, Huijie
    Wang, Yuan
    Wang, Zhijun
    Chen, Shaokang
    Hou, Zhuocheng
    Wang, Chuduan
    [J]. PLOS ONE, 2015, 10 (04):
  • [24] Transcriptome network-based method to identify genes associated with unruptured intracranial aneurysms
    Wei, L.
    Gao, Y. J.
    Wei, S. P.
    Zhang, Y. F.
    Zhang, W. F.
    Jiang, J. X.
    Sun, Z. Y.
    Xu, W.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2013, 12 (03) : 3263 - 3273
  • [25] Transcriptome Analysis of Elm (Ulmus pumila) Fruit to Identify Phytonutrients Associated Genes and Pathways
    Zhang, Luoyan
    Zhang, Xuejie
    Li, Mengfei
    Wang, Ning
    Qu, Xiaojian
    Fan, Shoujin
    [J]. FORESTS, 2019, 10 (09):
  • [26] Comprehensive analysis of epigenomics and transcriptome data to identify potential target genes associated with obesity
    Wu, Peili
    Guo, Lei
    Li, Xuelin
    Du, Yuejun
    Lin, Xiaochun
    Ma, Xiaoqin
    Lin, Yingbei
    Wen, Churan
    Yang, Chuyi
    Liu, Nannan
    Feng, Qijian
    Xue, Yaoming
    Guan, Meiping
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [27] Whole-Transcriptome RNA Sequencing to Identify Gene Fusions, Single Nucleotide Variants, and Splicing Variants in Genes Associated with Somatic and Germline Malignancies
    Liu, Y.
    Williams, N.
    Fuligni, F.
    Gerasimova, A.
    Elzinga, C.
    Cdebaca, V.
    Angeloni, T.
    Russell, M.
    Hambuch-Hawks, T.
    Van Ness, M.
    Ma, C.
    Racke, F.
    Godsey, J.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2023, 25 (11): : S24 - S24
  • [28] Whole transcriptome microarrays identify long non-coding RNAs associated with cardiac hypertrophy
    Zhang, Lu
    Hamad, Eman A.
    Vausort, Melanie
    Funakoshi, Hajime
    Nicot, Nathalie
    Nazarov, Petr V.
    Vallar, Laurent
    Feldman, Arthur M.
    Wagner, Daniel R.
    Devaux, Yvan
    [J]. GENOMICS DATA, 2015, 5 : 68 - 71
  • [29] Multiple Microarray Analyses Identify Key Genes Associated with the Development of NSCLC from COPD
    Zhang, L.
    Chen, J.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (03) : S530 - S531
  • [30] Integrating germline and somatic genetics to identify genes associated with lung cancer
    Pattee, Jack
    Zhan, Xiaowei
    Xiao, Guanghua
    Pan, Wei
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (03) : 233 - 247