Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data

被引:46
|
作者
Guo, Meichen [1 ]
De Persis, Claudio [1 ]
Tesi, Pietro [2 ]
机构
[1] Univ Groningen, Fac Sci & Engn, ENTEG, NL-9747 AG Groningen, Netherlands
[2] Univ Florence, DINFO, I-50139 Florence, Italy
关键词
Noise measurement; Control systems; Linear systems; Lyapunov methods; Nonlinear systems; Linear matrix inequalities; Stability analysis; Data-driven control; nonlinear control; nonlinear systems; robust control; sum of squares; OPTIMIZATION; DESIGN; SUM;
D O I
10.1109/TAC.2021.3115436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a recent article, we have shown how to learn controllers for unknown linear systems using finite-length noisy data by solving linear matrix inequalities. In this article, we extend this approach to deal with unknown nonlinear polynomial systems by formulating stability certificates in the form of data-dependent sum of squares programs, whose solution directly provides a stabilizing controller and a Lyapunov function. We then derive variations of this result that lead to more advantageous controller designs. The results also reveal connections to the problem of designing a controller starting from a least-square estimate of the polynomial system.
引用
收藏
页码:4210 / 4217
页数:8
相关论文
共 50 条
  • [41] Data-driven quadratic stabilization and LQR control of LTI systems
    Dai, Tianyu
    Sznaier, Mario
    [J]. AUTOMATICA, 2023, 153
  • [42] On data-driven stabilization of systems with nonlinearities satisfying quadratic constraints
    Luppi, Alessandro
    De Persis, Claudio
    Tesi, Pietro
    [J]. SYSTEMS & CONTROL LETTERS, 2022, 163
  • [43] Data-Driven Stabilization of Periodic Orbits
    Bramburger, Jason J.
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. IEEE ACCESS, 2021, 9 : 43504 - 43521
  • [44] Empirical mode modelingA data-driven approach to recover and forecast nonlinear dynamics from noisy data
    Joseph Park
    Gerald M. Pao
    George Sugihara
    Erik Stabenau
    Thomas Lorimer
    [J]. Nonlinear Dynamics, 2022, 108 : 2147 - 2160
  • [45] Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data
    Park, Joseph
    Pao, Gerald M.
    Sugihara, George
    Stabenau, Erik
    Lorimer, Thomas
    [J]. NONLINEAR DYNAMICS, 2022, 108 (03) : 2147 - 2160
  • [46] Data-driven control of nonlinear systems from input-output data
    Dai, X.
    De Persis, C.
    Monshizadeh, N.
    Tesi, P.
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1613 - 1618
  • [47] Data-driven robust stabilization with robust domain of attraction estimate for nonlinear discrete-time systems
    Li, Yongqiang
    Lu, Chaolun
    Hou, Zhongsheng
    Feng, Yuanjing
    [J]. AUTOMATICA, 2020, 119
  • [48] Data-Driven Fuzzy Modelling Methodologies for Multivariable Nonlinear Systems
    Silveira Junior, Jorge Sampaio
    Marques Costa, Edson Bruno
    [J]. 2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2018, : 125 - 131
  • [49] Online data-driven fuzzy modeling for nonlinear dynamic systems
    Hao, WJ
    Qiang, WY
    Chai, QX
    Tang, JL
    [J]. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2634 - 2639
  • [50] Data-driven nonlinear predictive control for feedback linearizable systems
    Alsalti, Mohammad
    Lopez, Victor G.
    Berberich, Julian
    Allgoewer, Frank
    Mueller, Matthias A.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 617 - 624