High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature

被引:34
|
作者
Zheng, Qinwen [1 ,2 ]
Li, Xiangming [1 ]
Yang, Qingzhen [3 ]
Li, Congming [1 ]
Liu, Gangqiang [1 ]
Wang, Yingche [4 ]
Sun, Pengcheng [5 ,6 ]
Tian, Hongmiao [1 ]
Wang, Chunhui [1 ]
Chen, Xiaoliang [1 ]
Shao, Jinyou [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Micro Nanotechnol Res Ctr, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[4] Xian Inst Electromech Informat Technol, Xian 710065, Shaanxi, Peoples R China
[5] Univ Illinois, Dept Mat Sci & Engn, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
Organogel electrolyte; Solid-state supercapacitors; Low temperature; High ionic conductivity; Wide voltage window; GEL POLYMER ELECTROLYTE; GRAPHENE-BASED SUPERCAPACITORS; DOUBLE-LAYER CAPACITOR; SPIRO-(1,1')-BIPYRROLIDINIUM TETRAFLUOROBORATE; ENERGY-STORAGE; MIXTURES; DENSITY; NANOCOMPOSITE; ACETONITRILE; SOLVENTS;
D O I
10.1016/j.jpowsour.2022.231102
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state supercapacitors have advantages of leakage free and flexibility but usually have low energy density at low temperature. This is largely due to the significantly declined ionic conductivity as well as the relatively low voltage window of the gel electrolytes. Here we designed a low temperature tolerant organogel electrolyte by systematically tuning the solvents' ionic conductivity, melting point and electrochemical stability via acetonitrile (AN), methyl formate (MF), and propylene carbonate (PC), respectively. The tuned gel electrolyte of polymer metrix of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with salt of ionic electrolyte 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) exhibited ionic conductivity of 2.95 mS cm(-1), mechanical strain rate of 350% and voltage window of 0-4 V at low temperature of-60 C. The stack cell of solid-state supercapacitor using activated carbon as electrode films exhibited capacitance retention of 98.5% at-60 C compared with that under room temperature, a 3.9% capacitance attenuation after 10,000 charge/discharge cycles, and exceptional stack energy density of 30.8 Wh kg(-1), at least three times higher than the state-of-the-art solid-state supercapacitors.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] High-performance solid-state supercapacitors with designable patterns based on used newspaper
    Zang, Limin
    Qiao, Xuan
    Liu, Qifan
    Yang, Chao
    Hu, Lei
    Yang, Jun
    Ma, Zihan
    CELLULOSE, 2020, 27 (02) : 1033 - 1042
  • [22] High-performance solid-state zinc-ion batteries enabled by flexible and highly Zn2+ conductive solid-polymer electrolyte
    Puttaswamy, Rangaswamy
    Tian, Zhenchuan
    Lee, Hyocheol
    Kim, Do Youb
    Le Mong, Anh
    Kim, Dukjoon
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (26) : 14075 - 14085
  • [23] High Performance Solid-state Battery with Integrated Cathode and Electrolyte
    Jin Feng
    Li Jing
    Hu Chenji
    Dong Houcai
    Chen Peng
    Shen Yanbin
    Chen Liwei
    ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (12) : 1399 - 1403
  • [24] Printable, high-performance solid-state electrolyte films
    Ping, Weiwei
    Wang, Chengwei
    Wang, Ruiliu
    Dong, Qi
    Lin, Zhiwei
    Brozena, Alexandra H.
    Dai, Jiaqi
    Luo, Jian
    Hu, Liangbing
    SCIENCE ADVANCES, 2020, 6 (47)
  • [25] Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films
    Zhang, Chuanfang
    Higgins, Thomas M.
    Park, Sang-Hoon
    O'Brien, Sean E.
    Long, Donghui
    Coleman, JonathanN.
    Nicolosi, Valeria
    NANO ENERGY, 2016, 28 : 495 - 505
  • [26] A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte
    Wang, Chengwei
    Xie, Hua
    Ping, Weiwei
    Dai, Jiaqi
    Feng, Guolin
    Yao, Yonggang
    He, Shuaiming
    Weaver, Jamie
    Wang, Howard
    Gaskell, Karen
    Hu, Liangbing
    ENERGY STORAGE MATERIALS, 2019, 17 : 234 - 241
  • [27] Solid-state synthesis of nickel selenide for high-performance supercapacitors
    Aftabuzzaman, Md
    Kim, Hwan Kyu
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 329
  • [28] "Salt-in-Fiber" Electrolyte Enables High-Voltage Solid-State Supercapacitors
    Ghanem, Loujain G.
    Shaheen, Basamat S.
    Allam, Nageh K.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 6410 - 6416
  • [29] Designing double comb copolymer as highly lithium ionic conductive solid-state electrolyte membranes
    Moon, Juyoung
    Cho, Sanghyuk
    Song, Eunho
    Park, Kun Woo
    Chae, Youngjin
    Park, Jung Tae
    REACTIVE & FUNCTIONAL POLYMERS, 2021, 169 (169):
  • [30] PAMPS/MMT composite hydrogel electrolyte for solid-state supercapacitors
    Wang, Jin
    Yu, Xianghu
    Wang, Cui
    Xiang, Kechuang
    Deng, Mengde
    Yin, Huabing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 709 : 596 - 601