Direct products of modules and the pure semisimplicity conjecture

被引:3
|
作者
Huisgen-Zimmermann, B [1 ]
Okoh, F [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
direct sum decomposition; pure semisimplicity; representation type;
D O I
10.1081/AGB-100000799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that, if R is either an Artin algebra or a commutative noetherian domain of Krull dimension 1, then infinite direct products of R-modules resist direct sum decomposition as follows: If (M-n)(n is an element ofN) is a family of non-isomorphic, finitely generated, indecomposable R-modules, then Pi (n is an element ofN) M-n is not a direct sum of finitely generated modules. The bearing of this direct product condition on the pure semisimplicity problem is discussed.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条