Lattice implication ordered semigroups

被引:21
|
作者
Pan, Xiaodong [1 ,2 ]
Xu, Yang [2 ]
机构
[1] SW Jiaotong Univ, Dept Math, Chengdu 610031, Peoples R China
[2] SW Jiaotong Univ, Intelligent Control Dev Ctr, Chengdu 610031, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
lattice ordered semigroup; implication semigroup; lattice implication algebra; filter; sl ideal;
D O I
10.1016/j.ins.2007.08.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
From the viewpoint of semantics, lattice implication algebras provide a basis to establish lattice-valued logic with truth value in a relatively general lattice. In this paper, we first introduce two notions of lattice implication n-ordered semigroup, and lattice implication p-ordered semigroup, which induced by lattice implication algebras. Secondly, we study some of their basic properties and prove that a lattice implication n-ordered semigroup is a residuated semigroup, and a lattice implication p-ordered semigroup is an arithmetic lattice ordered semigroup. We also define the homomorphism mapping between lattice implication n-ordered semigroups. Finally, we discuss some properties of filters and sl ideals in lattice implication n-ordered semigroups and lattice implication p-ordered semigroups. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:403 / 413
页数:11
相关论文
共 50 条
  • [41] From ordered semigroups to ordered hypersemigroups
    Kehayopulu, Niovi
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 21 - 35
  • [42] On the embedding of ordered semigroups into ordered group
    Ibrahim, MAF
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (02) : 303 - 313
  • [43] On fuzzy ordered semigroups
    Shabir, Muhammad
    Khan, Asghar
    INFORMATION SCIENCES, 2014, 274 : 236 - 248
  • [44] NEGATIVELY ORDERED SEMIGROUPS
    Heatherly, Henry E.
    Tucci, Ralph P.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 30 (01): : 81 - 97
  • [45] Soft ordered semigroups
    Jun, Young Bae
    Lee, Kyoung Ja
    Khan, Asghar
    MATHEMATICAL LOGIC QUARTERLY, 2010, 56 (01) : 42 - 50
  • [46] EXTENSIONS OF ORDERED SEMIGROUPS
    HULIN, AJ
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1976, 26 (01) : 1 - 12
  • [47] INTEGRALLY ORDERED SEMIGROUPS
    SATYANARAYANA, M
    NAGORE, CS
    SEMIGROUP FORUM, 1979, 17 (02) : 101 - 111
  • [48] Normally ordered semigroups
    Fernandes, Vitor H.
    GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 325 - 333
  • [49] On Ordered Ternary Semigroups
    Daddi, Vanita Rohit
    Pawar, Yashashree Shivajirao
    KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (04): : 375 - 381
  • [50] NATURALLY ORDERED SEMIGROUPS
    SATYANARAYANA, M
    NAGORE, CS
    SEMIGROUP FORUM, 1979, 18 (02) : 95 - 103