Nonlocal Cauchy problem for fractional evolution equations

被引:455
|
作者
Zhou, Yong [1 ]
Jiao, Feng [1 ]
机构
[1] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
关键词
C-0; semigroup; Fractional evolution equations; Mild solution; Nonlocal Cauchy problem; Laplace transform; Probability density; DIFFERENTIAL-EQUATIONS; EXISTENCE; INCLUSIONS; UNIQUENESS; DIFFUSION;
D O I
10.1016/j.nonrwa.2010.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the nonlocal Cauchy problem is discussed for the fractional evolution equations in an arbitrary Banach space and various criteria on the existence and uniqueness of mild solutions are obtained. An example to illustrate the applications of main results is also given. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4465 / 4475
页数:11
相关论文
共 50 条
  • [21] Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order (1, 2)
    Iqbal, Naveed
    Niazi, Azmat Ullah Khan
    Khan, Ikram Ullah
    Shah, Rasool
    Botmart, Thongchai
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 8891 - 8913
  • [22] Cauchy problem for fractional non-autonomous evolution equations
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 559 - 584
  • [23] Cauchy problem for fractional non-autonomous evolution equations
    Pengyu Chen
    Xuping Zhang
    Yongxiang Li
    [J]. Banach Journal of Mathematical Analysis, 2020, 14 : 559 - 584
  • [24] Cauchy problem for non-autonomous fractional evolution equations
    He, Jia Wei
    Zhou, Yong
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2241 - 2274
  • [25] Cauchy problem for non-autonomous fractional evolution equations
    Jia Wei He
    Yong Zhou
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 2241 - 2274
  • [26] A nonlocal Cauchy problem for nonlinear generalized fractional integro-differential equations
    Kharat, Vinod V.
    Tate, Shivaji
    Reshimkar, Anand Rajshekhar
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 489 - 506
  • [27] Nonlocal Problem for Fractional Stochastic Evolution Equations with Solution Operators
    Pengyu Chen
    Xuping Zhang
    Yongxiang Li
    [J]. Fractional Calculus and Applied Analysis, 2016, 19 : 1507 - 1526
  • [28] NONLOCAL PROBLEM FOR FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS WITH SOLUTION OPERATORS
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) : 1507 - 1526
  • [29] Study of fractional order impulsive evolution problem under nonlocal Cauchy conditions
    Shah, Kamal
    Ullah, Atta
    Nieto, Juan J.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8516 - 8527
  • [30] Nonlocal Cauchy problem for second order stochastic evolution equations in Hilbert spaces
    Balasubramaniam, P.
    Park, J. Y.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 713 - 728