Non-Negative Matrix Factorization with Auxiliary Information on Overlapping Groups

被引:14
|
作者
Shiga, Motoki [1 ]
Mamitsuka, Hiroshi [2 ]
机构
[1] Gifu Univ, Fac Engn, Dept Elect Elect & Comp Engn, Informat Course, Gifu 5011193, Japan
[2] Kyoto Univ, Inst Chem Res, Bioinformat Ctr, Uji, Kyoto 6110011, Japan
关键词
Non-negative matrix factorization; auxiliary information; semi-supervised learning; sparse structured norm; ALGORITHMS; CLASSIFICATION; SELECTION;
D O I
10.1109/TKDE.2014.2373361
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Matrix factorization is useful to extract the essential low-rank structure from a given matrix and has been paid increasing attention. A typical example is non-negative matrix factorization (NMF), which is one type of unsupervised learning, having been successfully applied to a variety of data including documents, images and gene expression, where their values are usually non-negative. We propose a new model of NMF which is trained by using auxiliary information of overlapping groups. This setting is very reasonable in many applications, a typical example being gene function estimation where functional gene groups are heavily overlapped with each other. To estimate true groups from given overlapping groups efficiently, our model incorporates latent matrices with the regularization term using a mixed norm. This regularization term allows group-wise sparsity on the optimized low-rank structure. The latent matrices and other parameters are efficiently estimated by a block coordinate gradient descent method. We empirically evaluated the performance of our proposed model and algorithm from a variety of viewpoints, comparing with four methods including MMF for auxiliary graph information, by using both synthetic and real world document and gene expression data sets.
引用
收藏
页码:1615 / 1628
页数:14
相关论文
共 50 条
  • [31] Non-negative matrix factorization for target recognition
    Long, Hong-Lin
    Pi, Yi-Ming
    Cao, Zong-Jie
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (06): : 1425 - 1429
  • [32] Rank selection for non-negative matrix factorization
    Cai, Yun
    Gu, Hong
    Kenney, Toby
    STATISTICS IN MEDICINE, 2023, 42 (30) : 5676 - 5693
  • [33] FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION
    Babaee, Mohammadreza
    Bahmanyar, Reza
    Rigoll, Gerhard
    Datcu, Mihai
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3023 - 3027
  • [34] Multiobjective Sparse Non-Negative Matrix Factorization
    Gong, Maoguo
    Jiang, Xiangming
    Li, Hao
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (08) : 2941 - 2954
  • [35] Novel Algorithm for Non-Negative Matrix Factorization
    Tran Dang Hien
    Do Van Tuan
    Pham Van At
    Le Hung Son
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2015, 11 (02) : 121 - 133
  • [36] Discriminant Projective Non-Negative Matrix Factorization
    Guan, Naiyang
    Zhang, Xiang
    Luo, Zhigang
    Tao, Dacheng
    Yang, Xuejun
    PLOS ONE, 2013, 8 (12):
  • [37] Enforced Sparse Non-Negative Matrix Factorization
    Gavin, Brendan
    Gadepally, Vijay
    Kepner, Jeremy
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 902 - 911
  • [38] Optimization and expansion of non-negative matrix factorization
    Xihui Lin
    Paul C. Boutros
    BMC Bioinformatics, 21
  • [39] Swarm Intelligence for Non-Negative Matrix Factorization
    Janecek, Andreas
    Tan, Ying
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2011, 2 (04) : 12 - 34
  • [40] Non-negative matrix factorization for face recognition
    Guillamet, D
    Vitriá, J
    TOPICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2504 : 336 - 344