Behavior of Continuous Concrete Beams Reinforced with FRP Bars

被引:0
|
作者
El-Mogy, Mostafa [1 ]
El-Ragaby, Amr [1 ]
El-Salakawy, Ehab [1 ]
机构
[1] Univ Manitoba, Dept Civil Engn, Winnipeg, MB R3T 2N2, Canada
关键词
FLEXURAL BEHAVIOR;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Continuous concrete beams are commonly used elements in structures such as parking garages and overpasses which might be exposed to extreme weather conditions and the application of de-icing salts. Therefore, the use of the non-corrodible fiber reinforced polymer (FRP) bars in these types of structures is beneficial. However, due to the linear-elastic behavior of FRP materials up to failure, the ability of such materials to redistribute loads and moments in continuous beams is questionable. To date, unlike simply supported structures, very few experimental studies investigated the behavior of continuous concrete beams reinforced with FRP bars. Due to the lack of research, recently published design guidelines for FRP-reinforced structures provided limited provisions regarding continuous beams. The objectives of this research are to investigate the behavior of continuous concrete beams reinforced with carbon and glass FRP bars and provide design guidelines to predict the failure load and failure location. This paper presents the experimental results of two reinforced concrete beams with rectangular cross section of 200x300 mm continuous over two spans of 2800 mm each. One beam was reinforced with CFRP longitudinal bars while the other reinforced with GFRP bars. Both beams were reinforced with steel stirrups and provided with different reinforcement configurations at critical sections. Beams were tested under concentrated monotonic loads applied at the mid-point of each span. It is concluded that the FRP-reinforced concrete beams were able to redistribute the connecting moment over the intermediate support. Also, the Canadian code CSA-S806-02 could reasonably predict the failure load of the tested beams; however, it fails to predict the failure location.
引用
收藏
页码:283 / 286
页数:4
相关论文
共 50 条
  • [21] Tension stiffening in concrete beams reinforced with steel and FRP bars
    Kaklauskas, G.
    Sokolov, A.
    STRENGTH, DURABILITY AND STABILITY OF MATERIALS AND STRUCTURES, PROCEEDINGS, 2007, : 39 - 44
  • [22] Modelling of concrete beams reinforced with FRP re-bars
    Ferreira, AJM
    Camanho, PP
    Marques, AT
    Fernandes, AA
    COMPOSITE STRUCTURES, 2001, 53 (01) : 107 - 116
  • [23] Elevated Temperature Performance of Concrete Beams Reinforced with FRP Bars
    Mcintyre, Emma R. E.
    Bisby, Luke A.
    Stratford, Tim J.
    RESPONSE OF STRUCTURES UNDER EXTREME LOADING, 2015, : 772 - 779
  • [24] Flexural response of concrete beams reinforced with FRP reinforcing bars
    Benmokrane, B
    Chaallal, O
    Masmoudi, R
    ACI STRUCTURAL JOURNAL, 1996, 93 (01) : 46 - 55
  • [25] Analytical modeling of concrete beams reinforced with carbon FRP bars
    Rafi, Muhammad Masood
    Nadjai, Ali
    Ali, Faris
    JOURNAL OF COMPOSITE MATERIALS, 2007, 41 (22) : 2675 - 2690
  • [26] Flexural and cracking behaviour of concrete beams reinforced with FRP bars
    Chalioris, C. E.
    Kosmidou, P. K.
    Panagiotopoulos, T. A.
    Karayannis, C. G.
    CONCRETE SOLUTIONS, 2016, : 487 - 492
  • [27] Experimental testing of concrete beams reinforced with carbon FRP bars
    Rafi, Muhammad Masood
    Nadjai, Ali
    Ali, Faris
    JOURNAL OF COMPOSITE MATERIALS, 2007, 41 (22) : 2657 - 2673
  • [28] Flexural behaviour of indeterminate concrete beams reinforced with FRP bars
    Gravina, R. J.
    Smith, S. T.
    ENGINEERING STRUCTURES, 2008, 30 (09) : 2370 - 2380
  • [29] Minimum Reinforcement Ratio of Concrete Beams Reinforced with FRP Bars
    Li, Chunxia
    Yan, SHilin
    ADVANCED RESEARCH ON MATERIAL ENGINEERING, CHEMISTRY AND BIOINFORMATICS, PTS 1 AND 2 (MECB 2011), 2011, 282-283 : 553 - 556
  • [30] Effect of Transverse Reinforcement on the Flexural Behavior of Continuous Concrete Beams Reinforced with FRP
    El-Mogy, Mostafa
    El-Ragaby, Amr
    El-Salakawy, Ehab
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2011, 15 (05) : 672 - 681