Sentiment and Context-refined Word Embeddings for Sentiment Analysis

被引:0
|
作者
Deniz, Ayca [1 ]
Angin, Merih [2 ]
Angin, Pelin [1 ]
机构
[1] Middle East Tech Univ, Dept Comp Engn, Ankara, Turkey
[2] Koc Univ, Dept Int Relat, Istanbul, Turkey
关键词
D O I
10.1109/SMC52423.2021.9659189
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Word embeddings have become the de-facto tool for representing text in natural language processing (NLP) tasks, as they can capture semantic and syntactic relations, unlike their precedents such as Bag-of-Words. Although word embeddings have been employed in various studies in recent years and proven to be effective in many NLP tasks, they are still immature for sentiment analysis, as they suffer from insufficient sentiment information. General word embedding models pre-trained on large corpora with methods such as Word2Vec or GloVe achieve limited success in domain-specific NLP tasks. On the other hand, training domain-specific word embeddings from scratch requires a high amount of data and computation power. In this work, we target both shortcomings of pre-trained word embeddings to boost the performance of domain-specific sentiment analysis tasks. We propose a model that refines pre-trained word embeddings with context information and leverages the sentiment scores of sentences obtained from a lexicon-based method to further improve performance. Experiment results on two benchmark datasets show that the proposed method significantly increases the accuracy of sentiment classification.
引用
收藏
页码:927 / 932
页数:6
相关论文
共 50 条
  • [21] Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning
    Elhassan, Nasrin
    Varone, Giuseppe
    Ahmed, Rami
    Gogate, Mandar
    Dashtipour, Kia
    Almoamari, Hani
    El-Affendi, Mohammed A.
    Al-Tamimi, Bassam Naji
    Albalwy, Faisal
    Hussain, Amir
    COMPUTERS, 2023, 12 (06)
  • [22] Fine-Tuning of Word Embeddings for Semantic Sentiment Analysis
    Atzeni, Mattia
    Recupero, Diego Reforgiato
    SEMANTIC WEB CHALLENGES, SEMWEBEVAL 2018, 2018, 927 : 140 - 150
  • [23] Refining Word Embeddings Using Intensity Scores for Sentiment Analysis
    Yu, Liang-Chih
    Wang, Jin
    Lai, K. Robert
    Zhang, Xuejie
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (03) : 671 - 681
  • [24] Learning Bilingual Sentiment Word Embeddings for Cross-language Sentiment Classification
    Zhou, Huiwei
    Chen, Long
    Shi, Fulin
    Huang, Degen
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, 2015, : 430 - 440
  • [25] A Neural Word Embeddings Approach for Multi-Domain Sentiment Analysis
    Dragoni, Mauro
    Petrucci, Giulio
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2017, 8 (04) : 457 - 470
  • [26] Sentiment analysis using convolutional neural network via word embeddings
    Nedjah, Nadia
    Santos, Igor
    Mourelle, Luiza de Macedo
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (04) : 2295 - 2319
  • [27] Performance Evaluation of Word and Sentence Embeddings for Finance Headlines Sentiment Analysis
    Mishev, Kostadin
    Gjorgjevikj, Ana
    Stojanov, Riste
    Mishkovski, Igor
    Vodenska, Irena
    Chitkushev, Ljubomir
    Trajanov, Dimitar
    ICT INNOVATIONS 2019: BIG DATA PROCESSING AND MINING, 2019, 1110 : 161 - 172
  • [28] Sentiment analysis based on improved pre-trained word embeddings
    Rezaeinia, Seyed Mahdi
    Rahmani, Rouhollah
    Ghodsi, Ali
    Veisi, Hadi
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 117 : 139 - 147
  • [29] Sentiment analysis using convolutional neural network via word embeddings
    Nadia Nedjah
    Igor Santos
    Luiza de Macedo Mourelle
    Evolutionary Intelligence, 2022, 15 : 2295 - 2319
  • [30] SCoEmbeddings: Encoding Sentiment Information into Contextualized Embeddings for Sentiment Analysis
    Huang, Hui
    Jin, Yueyuan
    Rao, Ruonan
    17TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2020 (CF 2020), 2020, : 261 - 264