A Deep Neural Network as Surrogate Model for Forward Simulation of Borehole Resistivity Measurements

被引:20
|
作者
Shahriari, M. [1 ]
Pardo, D. [2 ,3 ,4 ]
Moser, B. [1 ]
Sobieczky, F. [1 ]
机构
[1] SCCH, Hagenberg, Austria
[2] Univ Basque Country, UPV EHU, Leioa, Spain
[3] BCAM, Bilbao, Spain
[4] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain
关键词
Deep Learning; geosteering; forward problem; inverse problem; resistivity measurement;
D O I
10.1016/j.promfg.2020.02.075
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inverse problems appear in multiple industrial applications. Solving such inverse problems require the repeated solution of the forward problem. This is the most time-consuming stage when employing inversion techniques, and it constitutes a severe limitation when the inversion needs to be performed in real-time. In here, we focus on the real-time inversion of resistivity measurements for geosteering. We investigate the use of a deep neural network (DNN) to approximate the forward function arising from Maxwell's equations, which govern the electromagnetic wave propagation through a media. By doing so, the evaluation of the forward problems is performed offline, allowing for the online real-time evaluation (inversion) of the DNN. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:235 / 238
页数:4
相关论文
共 50 条
  • [1] Neural network architecture optimization using automated machine learning for borehole resistivity measurements
    Shahriari, M.
    Pardo, D.
    Kargaran, S.
    Teijeiro, T.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 234 (03) : 2488 - 2501
  • [2] A deep learning approach to the inversion of borehole resistivity measurements
    M. Shahriari
    D. Pardo
    A. Picon
    A. Galdran
    J. Del Ser
    C. Torres-Verdín
    [J]. Computational Geosciences, 2020, 24 : 971 - 994
  • [3] A deep learning approach to the inversion of borehole resistivity measurements
    Shahriari, M.
    Pardo, D.
    Picon, A.
    Galdran, A.
    Del Ser, J.
    Torres-Verdin, C.
    [J]. COMPUTATIONAL GEOSCIENCES, 2020, 24 (03) : 971 - 994
  • [4] Recent advances on the inversion of deep directional borehole resistivity measurements
    Puzyrev, Vladimir
    Pardo, David
    Calo, Víctor
    Torres-Verdín, Carlos
    [J]. Exploration Geophysics, 2019, 2019 (01)
  • [5] A deep neural network based surrogate model for damage identification in full-scale structures with incomplete noisy measurements
    Bui-Ngoc, Tram
    Ly, Duy-Khuong
    Truong, Tam T.
    Thongchom, Chanachai
    Nguyen-Thoi, T.
    [J]. FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2024, 18 (03) : 393 - 410
  • [6] Deep Learning Surrogate Models for Network Simulation
    Dearing, Matthew T.
    [J]. PROCEEDINGS OF THE 38TH ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACM SIGSIM-PADS 2024, 2024, : 65 - 66
  • [7] An adaptive surrogate model to structural reliability analysis using deep neural network
    Lieu, Qui X.
    Nguyen, Khoa T.
    Dang, Khanh D.
    Lee, Seunghye
    Kang, Joowon
    Lee, Jaehong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 189
  • [8] Error control and loss functions for the deep learning inversion of borehole resistivity measurements
    Shahriari, Mostafa
    Pardo, David
    Rivera, Jon A.
    Torres-Verdin, Carlos
    Picon, Artzai
    Del Ser, Javier
    Ossandon, Sebastian
    Calo, Victor M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (06) : 1629 - 1657
  • [9] A surrogate model for the Variable Infiltration Capacity model using deep learning artificial neural network
    Gu, Haiting
    Xu, Yue-Ping
    Ma, Di
    Xie, Jingkai
    Liu, Li
    Bai, Zhixu
    [J]. JOURNAL OF HYDROLOGY, 2020, 588
  • [10] IMEXnet - A Forward Stable Deep Neural Network
    Haber, Eldad
    Lensink, Keegan
    Treister, Eran
    Ruthotto, Lars
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97