Neural network architecture optimization using automated machine learning for borehole resistivity measurements

被引:0
|
作者
Shahriari, M. [1 ,2 ]
Pardo, D. [3 ,4 ,5 ]
Kargaran, S. [2 ]
Teijeiro, T. [3 ,4 ]
机构
[1] GE Healthcare Austria GmbH, Tiefenbach 15, A-4871 Zipf, Austria
[2] Software Competence Ctr Hagenberg GmbH SCCH, Softwarepark 32a, A-4232 Hagenberg, Austria
[3] Univ Basque Country UPV EHU, Dept Math, Leioa 48940, Spain
[4] Basque Ctr Appl Math BCAM, Bilbao 48009, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
关键词
Inverse theory; Machine learning; Neural networks; fuzzy logic; Downhole method; Wave propagation; INVERSION; MODEL;
D O I
10.1093/gji/ggad249
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the network after training also requires a significant amount of memory and processing power. In addition, we may overfit the model. In this work, we propose a scoring function that accounts for the accuracy and size of the DNNs compared to a reference DNNs that provides good approximations for the operators. Using this scoring function, we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the reference network; hence, it requires less computational effort during training and evaluation. The quasi-optimal DNN delivers comparable accuracy to the original large DNN.
引用
收藏
页码:2488 / 2501
页数:14
相关论文
共 50 条
  • [1] A Deep Neural Network as Surrogate Model for Forward Simulation of Borehole Resistivity Measurements
    Shahriari, M.
    Pardo, D.
    Moser, B.
    Sobieczky, F.
    [J]. INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING (ISM 2019), 2020, 42 : 235 - 238
  • [2] Borehole Resistivity Measurement Modeling Using Machine-Learning Techniques
    Xu, Yankai
    Sun, Keli
    Xie, Hui
    Zhong, Xiaoyan
    Mirto, Ettore
    Feng, Yao
    Hong, Xiaobo
    [J]. PETROPHYSICS, 2018, 59 (06): : 778 - 785
  • [3] A deep learning approach to the inversion of borehole resistivity measurements
    M. Shahriari
    D. Pardo
    A. Picon
    A. Galdran
    J. Del Ser
    C. Torres-Verdín
    [J]. Computational Geosciences, 2020, 24 : 971 - 994
  • [4] A deep learning approach to the inversion of borehole resistivity measurements
    Shahriari, M.
    Pardo, D.
    Picon, A.
    Galdran, A.
    Del Ser, J.
    Torres-Verdin, C.
    [J]. COMPUTATIONAL GEOSCIENCES, 2020, 24 (03) : 971 - 994
  • [5] Optimization of Neural Network Architecture using Lions Optimization Algorithm
    Malik, Kaptan
    Srivastava, Kanishk
    Sharma, Krishna
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 692 - 696
  • [6] Borehole electrical resistivity modeling using neural networks
    Zhang, L
    Poulton, MM
    Wang, T
    [J]. GEOPHYSICS, 2002, 67 (06) : 1790 - 1797
  • [7] MODELING OF BOREHOLE RESISTIVITY MEASUREMENTS USING INFINITE ELECTRICAL GRIDS
    ZEMANIAN, AH
    ANDERSON, B
    [J]. GEOPHYSICS, 1987, 52 (11) : 1525 - 1534
  • [8] Machine Learning at the Edge Using Neural Network Processor
    Lee, Edwin
    Parker, Michael
    Cervantes, Michael
    Plotner, Ben
    [J]. 2023 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE, HPEC, 2023,
  • [9] Structure Learning and Hyperparameter Optimization Using an Automated Machine Learning (AutoML) Pipeline
    Filippou, Konstantinos
    Aifantis, George
    Papakostas, George A.
    Tsekouras, George E.
    [J]. INFORMATION, 2023, 14 (04)
  • [10] Error control and loss functions for the deep learning inversion of borehole resistivity measurements
    Shahriari, Mostafa
    Pardo, David
    Rivera, Jon A.
    Torres-Verdin, Carlos
    Picon, Artzai
    Del Ser, Javier
    Ossandon, Sebastian
    Calo, Victor M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (06) : 1629 - 1657