Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

被引:40
|
作者
Dyatkin, Boris [1 ,2 ,6 ]
Osti, Naresh C. [3 ]
Zhang, Yu [4 ]
Zhang, Yu [4 ]
Wang, Hsiu-Wen [5 ]
Mamontov, Eugene [3 ]
Heller, William T. [3 ]
Zhang, Pengfei [5 ]
Rother, Gernot [5 ]
Cummings, Peter T. [4 ]
Wesolowski, David J. [5 ]
Gogotsi, Yury [1 ,2 ]
机构
[1] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[4] Vanderbilt Univ, Chem & Biomol Engn, Nashville, TN 37235 USA
[5] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[6] US Naval Res Lab, Washington, DC 20375 USA
关键词
Energy storage; Carbide-derived carbon; Ionic liquid; Neutron scattering; Self-diffusion; Supercapacitor; Pair distribution function; Surface chemistry; Molecular dynamics; Interface; CARBIDE-DERIVED CARBON; SMALL-ANGLE SCATTERING; NEUTRON-SCATTERING; NANOPOROUS CARBONS; ENERGY; CAPACITANCE; GRAPHENE; STORAGE; SUPERCAPACITORS; VISUALIZATION;
D O I
10.1016/j.carbon.2017.12.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(-trifluoromethylsulfonyl) imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 118
页数:15
相关论文
共 50 条
  • [41] Molecular scale structure and dynamics at an ionic liquid/electrode interface
    Reichert, Peter
    Kjaer, Kasper Skov
    van Driel, Tim Brandt
    Mars, Julian
    Ochsmann, Jannis Walther
    Pontoni, Diego
    Deutsch, Moshe
    Nielsen, Martin Meedom
    Mezger, Markus
    FARADAY DISCUSSIONS, 2018, 206 : 141 - 157
  • [42] Structure, dynamics and conductivities of ionic liquid-alcohol mixtures
    Otero-Mato, Jose M.
    Montes-Campos, Hadrian
    Gomez-Gonzalez, Victor
    Montoto, Martin
    Cabeza, Oscar
    Kondrat, Svyatoslav
    Varela, Luis M.
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 355
  • [43] Structure and Dynamics of an Ionic Liquid Mixture Film Confined by Mica
    Karunaratne, Waruni V.
    Margulis, Claudio J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (34): : 20971 - 20979
  • [44] Impingement dynamics of [EMIm]Ac ionic liquid drops on heated porous surfaces
    Zhang, Fang-Fang
    Chen, Geng
    Yuan, Pei
    Zhao, Chuang-Yao
    Li, Hua-Jie
    Li, Xiang-Yu
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2021, 120
  • [45] Influence of Water on Carbon Dioxide and Room Temperature Ionic Liquid Dynamics: Supported Ionic Liquid Membrane vs the Bulk Liquid
    Shin, Jae Yoon
    Yamada, Steven A.
    Fayer, Michael D.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (08): : 2389 - 2395
  • [46] Structure, dynamics and ionic conductivities of ternary ionic liquid/lithium salt/DMSO mixtures
    Martinez-Crespo, Pablo
    Otero-Lema, Martin
    Cabeza, Oscar
    Montes-Campos, Hadrian
    Varela, Luis M.
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 359
  • [47] Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores
    Lin, R.
    Huang, P.
    Segalini, J.
    Largeot, C.
    Taberna, P. L.
    Chmiola, J.
    Gogotsi, Y.
    Simon, P.
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 7025 - 7032
  • [48] Molecular dynamics simulation of the water structure in nano-pores between kaolinite (001) surfaces
    Lu, Xiancai
    Liu, Xiandong
    Zhang, Linye
    Liu, Qing
    Yang, Kan
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A571 - A571
  • [49] Molecular Dynamics Simulations of Carbon Dioxide and Water at an Ionic Liquid Interface
    Perez-Blanco, Marcos E.
    Maginn, Edward J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (35): : 10488 - 10499
  • [50] Charge/discharge properties of activated carbon/ruthenocene hybrid electrodes in an ionic liquid electrolyte
    Itoi, Hiroyuki
    Kasai, Yuto
    Tanabe, Yuichiro
    Suzuki, Ryutaro
    Miyaji, Masahiro
    Ohzawa, Yoshimi
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 299 (299)