A new neural network-group contribution method for estimation of flash point temperature of pure components

被引:86
|
作者
Gharagheizi, Farhad [1 ]
Alamdari, Reza Fareghi [2 ]
Angaji, Mahmood Torabi [1 ]
机构
[1] Univ Tehran, Fac Engn, Dept Chem Engn, Tehran, Iran
[2] Malek Ashtar Univ Technol, Fac Mat & Chem Engn, Dept Chem, Tehran, Iran
关键词
D O I
10.1021/ef700753t
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the present study, a new collection of 79 functional groups are used to correlate flash point temperature (FP) of pure components. These functional groups construct an accurate neural network-group contribution correlation to estimate flash point of pure components. For developing the model, 1378 pure components of various chemical families are used. Therefore, the model can be utilized to estimate the FP of pure components without any basic limitations.
引用
收藏
页码:1628 / 1635
页数:8
相关论文
共 50 条
  • [41] Group Contribution-Based Graph Convolution Network: Pure Property Estimation Model
    Sun Yoo Hwang
    Jeong Won Kang
    [J]. International Journal of Thermophysics, 2022, 43
  • [42] NEW GROUP-CONTRIBUTION METHOD FOR ESTIMATING PROPERTIES OF PURE COMPOUNDS
    CONSTANTINOU, L
    GANI, R
    [J]. AICHE JOURNAL, 1994, 40 (10) : 1697 - 1710
  • [43] A new group contribution method for calculating the boiling point of alkane
    Wang, KQ
    Wang, J
    [J]. CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2001, 21 (10) : 751 - 754
  • [44] A novel group contribution-based method for estimation of flash points of ester compounds
    Dai Yimin
    Liu Hui
    Li Xun
    Zhu Zhiping
    Zhang Yuefei
    Cao Zhong
    Zhu Lixuan
    Zhou Yue
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 136 : 138 - 146
  • [45] A New Group Contribution Method For Prediction of Density of Pure Ionic Liquids over a Wide Range of Temperature and Pressure
    Paduszynski, Kamil
    Domanska, Urszula
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (01) : 591 - 604
  • [46] A group contribution method for estimation of glass transition temperature ionic liquids
    Gharagheizi, Farhad
    Ilani-Kashkouli, Poorandokht
    Mohammadi, Amir H.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 81 : 91 - 105
  • [47] Use of group contribution method and intelligent algorithms to predict the flash temperature of binary mixtures
    Banihashemi, Morteza
    Movagharnejad, Kamyar
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2018, 117 : 539 - 550
  • [48] Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis
    Hukkerikar, Amol Shivajirao
    Sarup, Bent
    Ten Kate, Antoon
    Abildskov, Jens
    Sin, Guerkan
    Gani, Rafiqul
    [J]. FLUID PHASE EQUILIBRIA, 2012, 321 : 25 - 43
  • [49] Estimation of the enthalpy of vaporization and the entropy of vaporization for pure organic compounds at 298.15 K and at normal boiling temperature by a group contribution method
    Kolská, Z
    Ruzicka, V
    Gani, R
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (22) : 8436 - 8454
  • [50] Prediction of the flash points of alkanes by group bond contribution method using artificial neural networks
    Yong Pan
    Juncheng Jiang
    Zhirong Wang
    [J]. Frontiers of Chemical Engineering in China, 2007, 1 (4): : 390 - 394