hp-adaptive finite elements for time-harmonic Maxwell equations

被引:0
|
作者
Demkowicz, L [1 ]
机构
[1] Univ Texas, Texas Inst Computat & Appl Math, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review the fundamentals of hp-finite element discretisation of Maxwell equations and their numerical implementation, and describe an automatic hp-adaptive scheme for the time-harmonic Maxwell equations.
引用
收藏
页码:163 / 199
页数:37
相关论文
共 50 条
  • [21] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [22] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Gabriel Wittum
    Journal of Computational Mathematics, 2009, (05) : 563 - 572
  • [23] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Zhong, Liuqiang
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (05) : 563 - 572
  • [24] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [25] Time-Harmonic Maxwell’s Equations in Periodic Waveguides
    A. Kirsch
    B. Schweizer
    Archive for Rational Mechanics and Analysis, 2025, 249 (3)
  • [26] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [27] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [28] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [29] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [30] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492