Experimental data on the thermo-mechanical behaviour of human aorta

被引:0
|
作者
Atienza, JM [1 ]
Burgos, RJ [1 ]
Morán, M [1 ]
García-Montero, C [1 ]
Goicolea, FJ [1 ]
Elices, ML [1 ]
Acevedo, A [1 ]
Hayashi, K [1 ]
Elices, M [1 ]
Guinea, GV [1 ]
机构
[1] Univ Politecn Madrid, ETS Ingn Caminos, Dept Ciencia Mat, E-28040 Madrid, Spain
关键词
arterial mechanics; thermomechanical properties of blood vessels; inflation tests;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The effect of temperature on the mechanical response of human arteries still remains largely unknown, mainly due to the lack of appropriate experimental data. However, thermal behaviour of arteries is not a secondary issue in cardiovascular research since many cardiac surgical procedures are performed at non-physiological temperatures. In this work, the influence of temperature on the passive behaviour of human ascending aorta is studied in vitro by means of inflation tests. Two ascending aorta segments were tested in the range 0-200 mmHg at four different temperatures (17, 27, 37, 42 degrees C) and two different axial elongations (lambda=1.0, lambda=1.2). The results show that the combined change of internal pressure and axial elongation can have a dramatic effect on the dilatation coefficient of the arterial wall. The structural stiffness of the arterial wall seems to diminish with temperature, although the change was not significant in the range of temperatures and axial elongations tested.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [11] On thermo-mechanical nonlinear behaviour of shallow shells
    Khazaeinejad, P.
    Usmani, A. S.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 82 : 114 - 123
  • [12] Description of thermo-mechanical behaviour of reinforced concrete
    Pietruszczak, S
    Winnicki, A
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, 2003, : 119 - 126
  • [13] Nonlinear thermo-mechanical behaviour of MEMS resonators
    Hamed Farokhi
    Mergen H. Ghayesh
    Microsystem Technologies, 2017, 23 : 5303 - 5315
  • [14] Modelling the thermo-mechanical behaviour of a rock joint
    Nguyen, Thanh Son
    Kolditz, Olaf
    Yoon, Jeoung Seok
    Zhuang, Li
    GEOMECHANICS FOR ENERGY AND THE ENVIRONMENT, 2024, 37
  • [15] Thermo-mechanical behaviour of a compacted swelling clay
    Tang, A. -M.
    Cui, Y. -J.
    Barnel, N.
    GEOTECHNIQUE, 2008, 58 (01): : 45 - 54
  • [16] Thermo-mechanical behaviour of functional polymer nanocomposites
    Atuanya, C. U.
    Aigbodion, V. S.
    Agbo, C. O. A.
    Anene, F. A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (9-12): : 4771 - 4775
  • [17] Experimental and numerical investigation of the thermo-mechanical behaviour of an energy sheet pile wall
    Adinolfi, Marianna
    Loria, Alessandro F. Rotta
    Laloui, Lyesse
    Aversa, Stefano
    GEOMECHANICS FOR ENERGY AND THE ENVIRONMENT, 2021, 25
  • [18] RFID tags for cryogenic applications: Experimental and numerical analysis of thermo-mechanical behaviour
    Cauchois, Romain
    Yin, Man Su
    Gouantes, Aline
    Boddaert, Xavier
    MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 885 - 891
  • [19] Nonlinear thermo-mechanical behaviour of MEMS resonators
    Farokhi, Hamed
    Ghayesh, Mergen H.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (12): : 5303 - 5315
  • [20] Thermo-mechanical behaviour of functional polymer nanocomposites
    C. U. Atuanya
    V. S. Aigbodion
    C. O. A. Agbo
    F. A. Anene
    The International Journal of Advanced Manufacturing Technology, 2019, 103 : 4771 - 4775