Forest biomass estimation at regional and global levels, with special reference to China's forest biomass

被引:90
|
作者
Fang, JY [1 ]
Wang, ZM
机构
[1] Beijing Univ, Dept Urban & Environm Sci, Beijing 100871, Peoples R China
[2] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada
基金
中国国家自然科学基金;
关键词
biomass estimation method; biomass expansion factor (BEF); boreal forest; China; forest inventory; temperate forest;
D O I
10.1046/j.1440-1703.2001.00419.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Accurate estimation of forest biomass size and regional distribution is a prerequisite in answering a long-standing debate on the role of forest vegetation in the regional and global carbon cycle. Appropriate biomass estimation methods and available forest data sources are two key factors for this purpose. Among the estimation methods, the continuous Biomass Expansion Factor (BEF; defined as the ratio of all stand biomass to stem volume or biomass) method is considered to be the best. We applied the continuous BEF to forest inventory data of China and estimated a biomass carbon of 4.6 PgC and a biomass carbon density of 38.4 Mg ha(-1). A review of recent literature shows that forest carbon density in major temperate and boreal forest regions in the Northern Hemisphere has a narrow variance ranging from 29 Mg ha(-1) to 50 Mg ha(-1), with a global mean of 36.9 Mg ha(-1). This suggests that the forest biomass density in China is closely coincident with the global mean.
引用
收藏
页码:587 / 592
页数:6
相关论文
共 50 条
  • [41] Regional forest biomass and wood volume estimation using satellite data and ancillary data
    Fazakas, Z
    Nilsson, M
    Olsson, H
    AGRICULTURAL AND FOREST METEOROLOGY, 1999, 98-9 : 417 - 425
  • [42] Mapping global forest age from forest inventories, biomass and climate data
    Besnard, Simon
    Koirala, Sujan
    Santoro, Maurizio
    Weber, Ulrich
    Nelson, Jacob
    Guetter, Jonas
    Herault, Bruno
    Kassi, Justin
    N'Guessan, Anny
    Neigh, Christopher
    Poulter, Benjamin
    Zhang, Tao
    Carvalhais, Nuno
    EARTH SYSTEM SCIENCE DATA, 2021, 13 (10) : 4881 - 4896
  • [43] Forest Inventory and Aboveground Biomass Estimation with Terrestrial LiDAR in the Tropical Forest of Malaysia
    Beyene, Solomon M.
    Hussin, Yousif A.
    Kloosterman, Henk E.
    Ismail, Mohd Hasmadi
    CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (02) : 130 - 145
  • [44] Forest Biomass Estimation Based On Forest Inventory Data In Middle And Last Scales
    Li, Mingze
    Fan, Wenyi
    Yu, Ying
    ENVIRONMENTAL BIOTECHNOLOGY AND MATERIALS ENGINEERING, PTS 1-3, 2011, 183-185 : 220 - 224
  • [45] Prediction of Regional Forest Biomass Using Machine Learning: A Case Study of Beijing, China
    Liu, Jincheng
    Yue, Chengyu
    Pei, Chenyang
    Li, Xuejian
    Zhang, Qingfeng
    FORESTS, 2023, 14 (05):
  • [46] Forest biomass allometry in global land surface models
    Wolf, Adam
    Ciais, Philippe
    Bellassen, Valentin
    Delbart, Nicolas
    Field, Christopher B.
    Berry, Joseph A.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2011, 25
  • [47] Forest structure and biomass of a tropical seasonal rain forest in Xishuangbanna, Southwest China
    Zheng, Z
    Feng, ZL
    Cao, M
    Li, ZF
    Zhang, JH
    BIOTROPICA, 2006, 38 (03) : 318 - 327
  • [48] Estimation of forest biomass using envisat - ASAR data
    Jha, C. S.
    Rangaswamy, M.
    Vyjayanthi, N.
    Murthy, M. S. R.
    MICROWAVE REMOTE SENSING OF THE ATMOSPHERE AND ENVIRONMENT V, 2006, 6410
  • [49] DETERMINATION OF FOREST BIOMASS
    ATTIWILL, PM
    OVINGTON, JD
    FOREST SCIENCE, 1968, 14 (01) : 13 - &
  • [50] Forest biomass estimation using polarimetric SAR interferometry
    Mette, T
    Papathanassiou, KP
    Hajnsek, L
    Zimmermann, R
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 817 - 819