Adaptive Neural Network Modelling in Fatigue life Prediction under Load History effects

被引:5
|
作者
AbdulRazzaq, M. [1 ]
Ariffin, A. K. [1 ]
EI-Shafie, Ahmed [1 ]
Abdullah, S. [1 ]
Sajuri, Z. [1 ]
Akeel, N. A. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Dept Mech & Mat Engn, Bangi 43600, Selangor, Malaysia
来源
MATERIALS AND DESIGN, PTS 1-3 | 2011年 / 284-286卷
关键词
Feed forward (ANN); Fatigue; Load sequence; Variable amplitude loading; CRACK GROWTH;
D O I
10.4028/www.scientific.net/AMR.284-286.1266
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Artificial intelligence (AI) techniques and in particular, adaptive neural networks (ANN) have been commonly used in order to Fatigue life prediction. The aim of this paper is to consider a new crack propagation principle based on simulating experimental tests on three point-bend (TPB) specimens, which allow predicting the fatigue life and fatigue crack growth rate (FCGR). An important part of this paper is estimation of FCG rate related to different load histories. The effects of different load histories on the crack growth life are obtained in different representative simulation and experiments.
引用
收藏
页码:1266 / 1270
页数:5
相关论文
共 50 条
  • [31] A study of creep-fatigue life prediction using an artificial neural network
    Kwon, Young Il
    Lim, Byeong Soo
    2001, Korean Institute of Metals and Materials (07):
  • [32] Fatigue Life Prediction under Service Load Considering Strengthening Effect of Loads below Fatigue Limit
    ZHAO Lihui
    ZHENG Songlin
    FENG Jinzhi
    Chinese Journal of Mechanical Engineering, 2014, 27 (06) : 1178 - 1185
  • [33] Fatigue Life Prediction under Service Load Considering Strengthening Effect of Loads below Fatigue Limit
    Zhao Lihui
    Zheng Songlin
    Feng Jinzhi
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2014, 27 (06) : 1178 - 1185
  • [34] A neural network approach to elevated temperature creep-fatigue life prediction
    Venkatesh, V
    Rack, HJ
    INTERNATIONAL JOURNAL OF FATIGUE, 1999, 21 (03) : 225 - 234
  • [35] Fatigue Life Prediction under Service Load Considering Strengthening Effect of Loads below Fatigue Limit
    ZHAO Lihui
    ZHENG Songlin
    FENG Jinzhi
    Chinese Journal of Mechanical Engineering, 2014, (06) : 1178 - 1185
  • [36] Prediction of the fatigue life of natural rubber composites by artificial neural network approaches
    Xiang, Ke-Lu
    Xiang, Pu-Yu
    Wu, You-Ping
    MATERIALS & DESIGN, 2014, 57 : 180 - 185
  • [37] Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit
    Lihui Zhao
    Songlin Zheng
    Jinzhi Feng
    Chinese Journal of Mechanical Engineering, 2014, 27 : 1178 - 1185
  • [38] Isotonic Muscle Fatigue Prediction for Sport Training Using Artificial Neural Network Modelling
    Sharawardi, Nur Shidah Ahmad
    Choo, Yun-Huoy
    Chong, Shin-Horng
    Mohamad, Nur Ikhwan
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 582 - 591
  • [39] Neural network modelling for environmental prediction
    Murtagh, F
    Zheng, G
    Campbell, JG
    Aussem, A
    NEUROCOMPUTING, 2000, 30 (1-4) : 65 - 70
  • [40] A Model of BGA Thermal Fatigue Life Prediction Considering Load Sequence Effects
    Hu, Weiwei
    Li, Yaqiu
    Sun, Yufeng
    Mosleh, Ali
    MATERIALS, 2016, 9 (10)