Spectral clustering gene ontology terms to group genes by function

被引:0
|
作者
Speer, N [1 ]
Spieth, C [1 ]
Zell, A [1 ]
机构
[1] Univ Tubingen, Ctr Bioinformat Tubingen, D-72076 Tubingen, Germany
来源
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the invention of biotechnological high throughput methods like DNA microarrays, biologists are capable of producing huge amounts of data. During the analysis of such data the need for a grouping of the genes according to their biological function arises. In this paper, we propose a method that provides such a grouping. As functional information, we use Gene Ontology terms. Our method clusters all GO terms present in a data set using a Spectral Clustering method. Then, mapping the genes back to their annotation, genes can be associated to one or more clusters of defined biological processes. We show that our Spectral Clustering method is capable of finding clusters with high inner cluster similarity.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] CirGO: an alternative circular way of visualising gene ontology terms
    Irina Kuznetsova
    Artur Lugmayr
    Stefan J. Siira
    Oliver Rackham
    Aleksandra Filipovska
    BMC Bioinformatics, 20
  • [42] CirGO: an alternative circular way of visualising gene ontology terms
    Kuznetsova, Irina
    Lugmayr, Artur
    Siira, Stefan J.
    Rackham, Oliver
    Filipovska, Aleksandra
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [43] GOLink: Finding Cooccurring Terms across Gene Ontology Namespaces
    Francis, Richard W.
    INTERNATIONAL JOURNAL OF GENOMICS, 2013, 2013
  • [44] An experimental study of information content measurement of gene ontology terms
    Milano, Marianna
    Agapito, Giuseppe
    Guzzi, Pietro H.
    Cannataro, Mario
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (03) : 427 - 439
  • [46] Association Rule Mining of Gene Ontology Annotation Terms for SGD
    Nagar, Anurag
    Hahsler, Michael
    Al-Mubaid, Hisham
    2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2015, : 458 - 464
  • [47] An experimental study of information content measurement of gene ontology terms
    Marianna Milano
    Giuseppe Agapito
    Pietro H. Guzzi
    Mario Cannataro
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 427 - 439
  • [48] REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms
    Supek, Fran
    Bosnjak, Matko
    Skunca, Nives
    Smuc, Tomislav
    PLOS ONE, 2011, 6 (07):
  • [49] Validating gene clusterings by selecting informative gene ontology terms with mutual information
    Costa, Ivan G.
    de Souto, Marcilio C. P.
    Schliep, Alexander
    ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2007, 4643 : 81 - +
  • [50] Improving disease gene prioritization using the semantic similarity of Gene Ontology terms
    Schlicker, Andreas
    Lengauer, Thomas
    Albrecht, Mario
    BIOINFORMATICS, 2010, 26 (18) : i561 - i567