SCHUR CONVEXITY PROPERTIES FOR THE ELLIPTIC NEUMAN MEAN WITH APPLICATIONS

被引:0
|
作者
Song, Ying-Qing [1 ]
Wang, Miao-Kun [2 ]
Chu, Yu-Ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2015年 / 18卷 / 01期
关键词
elliptic Neuman mean; Jacobian elliptic function; Schur convex; Schur multiplicatively convex; Schur harmonic convex; HARMONIC CONVEXITIES; SYMMETRIC FUNCTION;
D O I
10.7153/mia-18-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Strictly Schur convexity, Schur multiplicative convexity and Schur harmonic convexity are investigated for the elliptic Neuman mean. As applications, several sharp bounds for the arithmetic, geometric and harmonic means in terms of the elliptic Neuman mean are presented.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条
  • [31] Schur convexity for two classes of symmetric functions and their applications
    Mingbao Sun
    Nanbo Chen
    Songhua Li
    Yinghui Zhang
    Chinese Annals of Mathematics, Series B, 2014, 35 : 969 - 990
  • [32] An infinite dimensional version of the schur convexity property and applications
    Vallee, Claude
    Radulescu, Vicentiu
    ANALYSIS AND APPLICATIONS, 2007, 5 (02) : 123 - 136
  • [33] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    CHU YuMing1 & XIA WeiFeng2 1 Department of Mathematics
    Science China Mathematics, 2009, (10) : 2099 - 2106
  • [34] Schur convexity of generalized geometric Bonferroni mean involving three parameters
    Wu, Shan-He
    Shi, Huan-Nan
    Wang, Dong-Sheng
    Italian Journal of Pure and Applied Mathematics, 2019, (42): : 196 - 207
  • [35] Schur-power convexity of integral mean for convex functions on the coordinates
    Shi, Huannan
    Zhang, Jing
    OPEN MATHEMATICS, 2023, 21 (01):
  • [36] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    YuMing Chu
    WeiFeng Xia
    Science in China Series A: Mathematics, 2009, 52 : 2099 - 2106
  • [37] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    Chu YuMing
    Xia WeiFeng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2099 - 2106
  • [38] Schur convexity of generalized geometric Bonferroni mean involving three parameters
    Wu, Shan-He
    Shi, Huan-Nan
    Wang, Dong-Sheng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 196 - 207
  • [39] Schur Convexity of Mixed Mean of n Variables Involving Three Parameters
    Wang, Dong-Sheng
    Shi, Huan-Nan
    Fu, Chun-Ru
    FILOMAT, 2020, 34 (11) : 3663 - 3674
  • [40] SHARP LEHMER MEAN BOUNDS FOR NEUMAN MEANS WITH APPLICATIONS
    Chu, Yu-Ming
    Qian, Wei-Mao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 583 - 596