Thermal nanoimprint lithography for drift correction in super-resolution fluorescence microscopy

被引:14
|
作者
Youn, Yeoan [1 ,2 ]
Ishitsuka, Yuji [2 ,3 ]
Jin, Chaoyi [1 ,2 ]
Selvin, Paul R. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Phys Living Cells, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
来源
OPTICS EXPRESS | 2018年 / 26卷 / 02期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PHOTOACTIVATION LOCALIZATION MICROSCOPY; OPTICAL RECONSTRUCTION MICROSCOPY; MARKERS;
D O I
10.1364/OE.26.001670
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Localization-based super-resolution microscopy enables imaging of biological structures with sub-diffraction-limited accuracy, but generally requires extended acquisition time. Consequently, stage drift often limits the spatial precision. Previously, we reported a simple method to correct for this by creating an array of 1 mu m(3) fiducial markers, every similar to 8 mu m, on the coverslip, using UV-nanoimprint lithography (UV-NIL). While this allowed reliable and accurate 3D drift correction, it suffered high autofluorescence background with shorter wavelength illumination, unstable adsorption to the substrate glass surface, and suboptimal biocompatibility. Here, we present an improved fiducial micro-pattern prepared by thermal nanoimprint lithography (T-NIL). The new pattern is made of a thermal plastic material with low fluorescence backgrounds across the wide excitation range, particularly in the blueregion; robust structural stability under cell culturing condition; and a high bio-compatibility in terms of cell viability and adhesion. We demonstrate drift precision to 1.5 nm for lateral (x, y) and 6.1 nm axial (z) axes every 0.2 seconds for a total of 1 min long image acquisition. As a proof of principle, we acquired 4-color wide-field fluorescence images of live mammalian cells; we also acquired super-resolution images of fixed hippocampal neurons, and super-resolution images of live glutamate receptors and postsynaptic density proteins. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1670 / 1680
页数:11
相关论文
共 50 条
  • [31] Optimizing Fluorophores For Super-resolution Fluorescence STED Microscopy
    Han, Kyu Young
    Rittweger, Eva
    Irvine, Scott E.
    Eggeling, Christian
    Hell, Stefan W.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 637A - 637A
  • [32] Bleaching-Resistant Super-Resolution Fluorescence Microscopy
    Kwon, Jiwoong
    Elgawish, Mohamed Saleh
    Shim, Sang-Hee
    ADVANCED SCIENCE, 2022, 9 (09)
  • [33] Spectrally resolved super-resolution fluorescence microscopy.
    Xu, K.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [34] Continuous active development of super-resolution fluorescence microscopy
    Wang, Yong
    Fei, Jingyi
    PHYSICAL BIOLOGY, 2020, 17 (03)
  • [35] Bioimaging on the nanoscale: Super-resolution fluorescence microscopy with STORM
    Zhuang, Xiaowei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [36] Example-Based Super-Resolution Fluorescence Microscopy
    Jia, Shu
    Han, Boran
    Kutz, J. Nathan
    SCIENTIFIC REPORTS, 2018, 8
  • [37] Live-Cell Super-resolution Fluorescence Microscopy
    A. S. Mishin
    K. A. Lukyanov
    Biochemistry (Moscow), 2019, 84 : 19 - 31
  • [38] Fluorescence microscopy for quality control in nanoimprint lithography
    Finder, C
    Beck, M
    Seekamp, J
    Pfeiffer, K
    Carlberg, P
    Maximov, I
    Reuther, F
    Sarwe, EL
    Zankovych, S
    Ahopelto, J
    Montelius, L
    Mayer, C
    Torres, CMS
    MICROELECTRONIC ENGINEERING, 2003, 67-8 : 623 - 628
  • [39] Aberration characterization and correction in super-resolution localization microscopy
    Zhao Z.
    Zhang Z.
    Huang Z.
    Huang, Zhenli (leo@hust.edu.cn), 1600, Chinese Optical Society (37):
  • [40] Sub-nanometer drift correction for super-resolution imaging
    Tang, Y.
    Wang, X.
    Zhang, X.
    Li, J.
    Dai, L.
    OPTICS LETTERS, 2014, 39 (19) : 5685 - 5688