Thermal nanoimprint lithography for drift correction in super-resolution fluorescence microscopy

被引:14
|
作者
Youn, Yeoan [1 ,2 ]
Ishitsuka, Yuji [2 ,3 ]
Jin, Chaoyi [1 ,2 ]
Selvin, Paul R. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Phys Living Cells, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
来源
OPTICS EXPRESS | 2018年 / 26卷 / 02期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PHOTOACTIVATION LOCALIZATION MICROSCOPY; OPTICAL RECONSTRUCTION MICROSCOPY; MARKERS;
D O I
10.1364/OE.26.001670
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Localization-based super-resolution microscopy enables imaging of biological structures with sub-diffraction-limited accuracy, but generally requires extended acquisition time. Consequently, stage drift often limits the spatial precision. Previously, we reported a simple method to correct for this by creating an array of 1 mu m(3) fiducial markers, every similar to 8 mu m, on the coverslip, using UV-nanoimprint lithography (UV-NIL). While this allowed reliable and accurate 3D drift correction, it suffered high autofluorescence background with shorter wavelength illumination, unstable adsorption to the substrate glass surface, and suboptimal biocompatibility. Here, we present an improved fiducial micro-pattern prepared by thermal nanoimprint lithography (T-NIL). The new pattern is made of a thermal plastic material with low fluorescence backgrounds across the wide excitation range, particularly in the blueregion; robust structural stability under cell culturing condition; and a high bio-compatibility in terms of cell viability and adhesion. We demonstrate drift precision to 1.5 nm for lateral (x, y) and 6.1 nm axial (z) axes every 0.2 seconds for a total of 1 min long image acquisition. As a proof of principle, we acquired 4-color wide-field fluorescence images of live mammalian cells; we also acquired super-resolution images of fixed hippocampal neurons, and super-resolution images of live glutamate receptors and postsynaptic density proteins. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1670 / 1680
页数:11
相关论文
共 50 条
  • [1] Micro-Patterned Coverslips Using Thermal Nanoimprint Lithography for Drift Correction for Super-Resolution Fluorescence Microscopy
    Youn, Yeoan
    Ishitsuka, Yuji
    Jin, Chaoyi
    Selvin, Paul R.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 692A - 692A
  • [2] Influence of drift correction precision on super-resolution localization microscopy
    Shang, Mingtao
    Huang, Zhen-Li
    Wang, Yujie
    APPLIED OPTICS, 2022, 61 (13) : 3516 - 3522
  • [3] Super-Resolution Fluorescence Microscopy
    Huang, Bo
    Bates, Mark
    Zhuang, Xiaowei
    ANNUAL REVIEW OF BIOCHEMISTRY, 2009, 78 : 993 - 1016
  • [4] The Principles of Super-Resolution Fluorescence Microscopy
    Klementieva, N. V.
    Zagaynova, E. V.
    Lukyanov, K. A.
    Mishin, A. S.
    SOVREMENNYE TEHNOLOGII V MEDICINE, 2016, 8 (02) : 130 - 138
  • [5] A guide to super-resolution fluorescence microscopy
    Schermelleh, Lothar
    Heintzmann, Rainer
    Leonhardt, Heinrich
    JOURNAL OF CELL BIOLOGY, 2010, 190 (02): : 165 - 175
  • [6] Super-resolution fluorescence polarization microscopy
    Zhanghao, Karl
    Gao, Juntao
    Jin, Dayong
    Zhang, Xuedian
    Xi, Peng
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2018, 11 (01)
  • [7] Real-time adaptive drift correction for super-resolution localization microscopy
    Grover, Ginni
    Mohrman, Wyatt
    Piestun, Rafael
    OPTICS EXPRESS, 2015, 23 (18): : 23887 - 23898
  • [8] Methods - Progress in super-resolution fluorescence microscopy
    不详
    METHODS, 2020, 174 : 1 - 2
  • [9] Review of Super-Resolution Fluorescence Microscopy for Biology
    Leung, Bonnie O.
    Chou, Keng C.
    APPLIED SPECTROSCOPY, 2011, 65 (09) : 967 - 980
  • [10] Putting super-resolution fluorescence microscopy to work
    Jennifer Lippincott-Schwartz
    Suliana Manley
    Nature Methods, 2009, 6 (1) : 21 - 23