THE STRONGLY PRIME RADICAL OF A FUZZY IDEAL

被引:0
|
作者
Bergamaschi, Flaulles B. [1 ]
Santiago, Regivan H. N. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Informat & Matemat Aplicada, Natal, RN, Brazil
来源
关键词
Fuzzy ideal; Strongly prime ideal; Strongly prime radical; Fuzzy radical; RINGS; PRODUCTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 2013, Bergamaschi and Santiago(1) proposed Strongly Prime Fuzzy(SP) ideals for commutative and noncommutative rings with unity, and investigated their properties. This paper goes a step further since it provides the concept of Strongly Prime Radical of a fuzzy ideal and its properties are investigated. It is shown that Zadeh's extension preserves strongly prime radicals. Also, a version of Theorem of Correspondence for strongly prime fuzzy ideals is proved.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 50 条
  • [21] On the complete integral closure of rings that admit φ-strongly prime ideal
    Badawi, A
    COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 15 - 22
  • [22] FUZZY CONVEX STRUCTURE AND PRIME FUZZY IDEAL SPACE ON RESIDUATED LATTICES
    Dong, Yan Yan
    Li, Juan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (12) : 2725 - 2735
  • [23] Pythagorean Fuzzy Nil Radical of Pythagorean Fuzzy Ideal
    Talhaoui, A.
    Melliani, S.
    Bakhadach, I.
    Achik, Sofyane
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [24] Strongly Prime Fuzzy Ideals Over Noncommutative Rings
    Bergamaschi, Flaulles Boone
    Santiago, Regivan H. N.
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [26] Associated Prime Ideal and Minimal Prime Ideal of an Ideal of an L-Subring
    Prajapati, Anand Swaroop
    Ajmal, Naseem
    Jahan, Iffat
    FUZZY INFORMATION AND ENGINEERING, 2023, 15 (04) : 324 - 334
  • [27] Strongly prime and *-prime crossed products
    Bohra, Nisha
    Joshi, Kanchan
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2016, 57 (03): : 561 - 571
  • [28] COMPLETELY PRIME RADICAL AND PRIMARY IDEAL REPRESENTATIONS IN NON-COMMUTATIVE RINGS
    SATYANARAYANA, M
    ALAMIRI, H
    MATHEMATISCHE ZEITSCHRIFT, 1971, 121 (02) : 181 - +
  • [29] ON STRONGLY PRIME Γ-SEMIRINGS
    Dutta, T. K.
    Dhara, S.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2009, 55 (01): : 213 - 224
  • [30] THE LEAST PRIME IDEAL
    WEISS, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1983, 338 : 56 - 94