Data-Driven Regulation Reserve Capacity Determination Based on Bayes Theorem

被引:17
|
作者
Liu, Likai [1 ]
Hu, Zechun [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Regulation reserves; conditional probability; data-driven; Bayes theorem;
D O I
10.1109/TPWRS.2020.2965763
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To counteract the real-time power fluctuations and maintain the performance of the frequency regulation, it is essential for the system operator to properly determine the frequency regulation reserve capacities (FRRCs). This letter develops a new data-driven method to quantify the FRRCs considering the time-varying wind, solar power outputs, and load power variations. This method mainly includes three steps: first, the concerned power variation ranges are forecasted by using the extreme learning machine-based interval prediction method; second, an adequacy criterion is proposed based on the conditional probability of reaching a certain frequency control standard under a given FRRC and the forecasted power variation ranges; and third, the minimum FRRC satisfying the proposed criterion is determined as the FRRC requirement. To make the high-dimensional probability calculation tractable, Bayes theorem is adopted to simplify the original conditional probability function. The simulation results show that the proposed method can reduce the FRRC and improve the frequency control performance compared with the actual historical data.
引用
收藏
页码:1646 / 1649
页数:4
相关论文
共 50 条
  • [41] Data-driven precision determination of the material budget in ALICE
    Acharya, S.
    Adamova, D.
    Adler, A.
    Rinella, G. Aglieri
    Agnello, M.
    Agrawal, N.
    Ahammed, Z.
    Ahmad, S.
    Ahn, S. U.
    Ahuja, I.
    Akindinov, A.
    Al-Turany, M.
    Aleksandrov, D.
    Alessandro, B.
    Alfanda, H. M.
    Molina, R. Alfaro
    Ali, B.
    Alici, A.
    Alizadehvandchali, N.
    Alkin, A.
    Alme, J.
    Alocco, G.
    Alt, T.
    Altsybeev, I.
    Anaam, M. N.
    Andrei, C.
    Andronic, A.
    Anguelov, V.
    Antinori, F.
    Antonioli, P.
    Apadula, N.
    Aphecetche, L.
    Appelshaeuser, H.
    Arata, C.
    Arcelli, S.
    Aresti, M.
    Arnaldi, R.
    Arneiro, J. G. M. C. A.
    Arsene, I. C.
    Arslandok, M.
    Augustinus, A.
    Averbeck, R.
    Azmi, M. D.
    Badala, A.
    Bae, J.
    Baek, Y. W.
    Bai, X.
    Bailhache, R.
    Bailung, Y.
    Balbino, A.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (11)
  • [42] Data-Driven Determination of the Number of Jumps in Regression Curves
    Wang, Guanghui
    Zou, Changliang
    Qiu, Peihua
    TECHNOMETRICS, 2022, 64 (03) : 312 - 322
  • [43] Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries
    Peng, Kaile
    Deng, Zhongwei
    Bao, Zhibin
    Hu, Xiaosong
    JOURNAL OF ENERGY STORAGE, 2023, 67
  • [44] Data-driven determination of zooplankton bioregions and robustness analysis
    Pata, Patrick R.
    Galbraith, Moira
    Young, Kelly
    Margolin, Andrew R.
    Perry, R. Ian
    Hunt, Brian P. V.
    METHODSX, 2024, 12
  • [45] The data economy and data-driven ecosystems: Regulation, frameworks and case studies
    Kraemer, Jan
    Whalley, Jason
    Batura, Olga
    TELECOMMUNICATIONS POLICY, 2019, 43 (02) : 113 - 115
  • [46] Data-driven Automatic Generation Control capacity prediction method
    Wang, Shuo
    Kong, Xiangyu
    Liu, Mao
    Shi, Haobo
    Wang, Xi
    Dai, Qian
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [47] Influence of rain on motorway road capacity - a data-driven analysis
    Calvert, S. C.
    Snelder, M.
    2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 1481 - 1486
  • [48] Capacity Allocation in a Service System: Parametric and Data-Driven Approaches
    Liang, Liping
    Xiao, Guanlian
    Ye, Hengqing
    DIGITAL HUMAN MODELING: APPLICATIONS IN HEALTH, SAFETY, ERGONOMICS, AND RISK MANAGEMENT: ERGONOMICS AND DESIGN, 2017, 10286 : 295 - 307
  • [49] A Data-Driven Method for Predicting Capacity Degradation of Rechargeable Batteries
    Pajovic, Milutin
    Orlik, Philip V.
    Wada, Toshihiro
    Takegami, Tomoki
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1259 - 1265
  • [50] A data-driven path planning model for crowd capacity analysis
    Tan, Sing Kuang
    Hu, Nan
    Cai, Wentong
    JOURNAL OF COMPUTATIONAL SCIENCE, 2019, 34 : 66 - 79