An analytical approach to heat kernel estimates on strongly recurrent metric spaces

被引:6
|
作者
Hu, Jiaxin [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
heat kernel; effective resistance; alpha-set; Dirichlet form; Green function;
D O I
10.1017/S001309150500177X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that sub-Gaussian estimates of heat kernels of regular Dirichlet forms are equivalent to the regularity of measures, two-sided bounds of effective resistances and the locality of semigroups, on strongly recurrent compact metric spaces. Upper bounds of effective resistances imply the compact embedding theorem for domains of Dirichlet forms, and give rise to the existence of Green functions with zero Dirichlet boundary conditions. Green functions play an important role in our analysis. Our emphasis in this paper is on the analytic aspects of deriving two-sided sub-Gaussian bounds of heat kernels. We also give the probabilistic interpretation for each of the main analytic steps.
引用
收藏
页码:171 / 199
页数:29
相关论文
共 50 条
  • [31] Heat kernel and green function estimates on noncompact symmetric spaces
    Anker, JP
    Ji, L
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (06) : 1035 - 1091
  • [32] Implicit Annealing in Kernel Spaces: A Strongly Consistent Clustering Approach
    Paul, Debolina
    Chakraborty, Saptarshi
    Das, Swagatam
    Xu, Jason
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5862 - 5871
  • [33] Embedding metric spaces into normed spaces and estimates of metric capacity
    Averkov, Gennadiy
    Duevelmeyer, Nico
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (03): : 197 - 206
  • [34] Embedding metric spaces into normed spaces and estimates of metric capacity
    Gennadiy Averkov
    Nico Düvelmeyer
    Monatshefte für Mathematik, 2007, 152 : 197 - 206
  • [35] ESTIMATES FOR THE HEAT KERNEL ON DIFFERENTIAL FORMS ON RIEMANNIAN SYMMETRIC SPACES AND APPLICATIONS
    Lohoue, N.
    Mehdi, S.
    ASIAN JOURNAL OF MATHEMATICS, 2010, 14 (04) : 529 - 579
  • [36] TWO-SIDED ESTIMATES OF HEAT KERNELS ON METRIC MEASURE SPACES
    Grigor'yan, Alexander
    Telcs, Andras
    ANNALS OF PROBABILITY, 2012, 40 (03): : 1212 - 1284
  • [37] GRADIENT ESTIMATES AND HEAT KERNEL ESTIMATES
    QIAN, ZM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 975 - 990
  • [38] Kernel density estimation in metric spaces
    Gu, Chenfei
    Huang, Mian
    Song, Xinyu
    Wang, Xueqin
    SCANDINAVIAN JOURNAL OF STATISTICS, 2025,
  • [39] Kernel and capacity estimates in Dirichlet spaces
    El-Fallah, O.
    Elmadani, Y.
    Kellay, K.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (03) : 867 - 895
  • [40] The heat kernel and its estimates
    Saloff-Coste, Laurent
    PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 : 405 - 436