FedCO: Communication-Efficient Federated Learning via Clustering Optimization

被引:6
|
作者
Al-Saedi, Ahmed A. [1 ]
Boeva, Veselka [1 ]
Casalicchio, Emiliano [1 ,2 ]
机构
[1] Blekinge Inst Technol, Dept Comp Sci, SE-37179 Karlskrona, Sweden
[2] Sapienza Univ Rome, Dept Comp Sci, I-00185 Rome, Italy
关键词
federated learning; Internet of Things; clustering; communication efficiency; convolutional neural network;
D O I
10.3390/fi14120377
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) provides a promising solution for preserving privacy in learning shared models on distributed devices without sharing local data on a central server. However, most existing work shows that FL incurs high communication costs. To address this challenge, we propose a clustering-based federated solution, entitled Federated Learning via Clustering Optimization (FedCO), which optimizes model aggregation and reduces communication costs. In order to reduce the communication costs, we first divide the participating workers into groups based on the similarity of their model parameters and then select only one representative, the best performing worker, from each group to communicate with the central server. Then, in each successive round, we apply the Silhouette validation technique to check whether each representative is still made tight with its current cluster. If not, the representative is either moved into a more appropriate cluster or forms a cluster singleton. Finally, we use split optimization to update and improve the whole clustering solution. The updated clustering is used to select new cluster representatives. In that way, the proposed FedCO approach updates clusters by repeatedly evaluating and splitting clusters if doing so is necessary to improve the workers' partitioning. The potential of the proposed method is demonstrated on publicly available datasets and LEAF datasets under the IID and Non-IID data distribution settings. The experimental results indicate that our proposed FedCO approach is superior to the state-of-the-art FL approaches, i.e., FedAvg, FedProx, and CMFL, in reducing communication costs and achieving a better accuracy in both the IID and Non-IID cases.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Communication-Efficient Federated Learning for Decision Trees
    Zhao, Shuo
    Zhu, Zikun
    Li, Xin
    Chen, Ying-Chi
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 5478 - 5492
  • [22] Communication-Efficient Federated Learning with Adaptive Quantization
    Mao, Yuzhu
    Zhao, Zihao
    Yan, Guangfeng
    Liu, Yang
    Lan, Tian
    Song, Linqi
    Ding, Wenbo
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [23] Communication-Efficient Secure Aggregation for Federated Learning
    Ergun, Irem
    Sami, Hasin Us
    Guler, Basak
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3881 - 3886
  • [24] FedBoost: Communication-Efficient Algorithms for Federated Learning
    Hamer, Jenny
    Mohri, Mehryar
    Suresh, Ananda Theertha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [25] Ternary Compression for Communication-Efficient Federated Learning
    Xu, Jinjin
    Du, Wenli
    Jin, Yaochu
    He, Wangli
    Cheng, Ran
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) : 1162 - 1176
  • [26] FedQMIX: Communication-efficient federated learning via multi-agent reinforcement learning
    Cao, Shaohua
    Zhang, Hanqing
    Wen, Tian
    Zhao, Hongwei
    Zheng, Quancheng
    Zhang, Weishan
    Zheng, Danyang
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (02):
  • [27] Graph-Based Traffic Forecasting via Communication-Efficient Federated Learning
    Zhang, Chenhan
    Zhang, Shiyao
    Yu, Shui
    Yu, James J. Q.
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2041 - 2046
  • [28] Communication-Efficient Federated Edge Learning via Optimal Probabilistic Device Scheduling
    Zhang, Maojun
    Zhu, Guangxu
    Wang, Shuai
    Jiang, Jiamo
    Liao, Qing
    Zhong, Caijun
    Cui, Shuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (10) : 8536 - 8551
  • [29] Federated Learning with Autotuned Communication-Efficient Secure Aggregation
    Bonawitz, Keith
    Salehi, Fariborz
    Konecny, Jakub
    McMahan, Brendan
    Gruteser, Marco
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1222 - 1226
  • [30] On the Design of Communication-Efficient Federated Learning for Health Monitoring
    Chu, Dong
    Jaafar, Wael
    Yanikomeroglu, Halim
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1128 - 1133