Inference for high-dimensional instrumental variables regression

被引:11
|
作者
Gold, David [1 ]
Lederer, Johannes [1 ]
Tao, Jing [2 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Econ, Seattle, WA 98195 USA
关键词
High-dimensional inference; Instrumental variables; De-biasing; LIKELIHOOD ESTIMATORS; CONFIDENCE-INTERVALS; MAXIMUM-LIKELIHOOD; LINEAR-MODELS; LEAST-SQUARES; LASSO; SELECTION; TESTS; PREDICTION; EFFICIENCY;
D O I
10.1016/j.jeconom.2019.09.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper concerns statistical inference for the components of a high-dimensional regression parameter despite possible endogeneity of each regressor. Given a first-stage linear model for the endogenous regressors and a second-stage linear model for the dependent variable, we develop a novel adaptation of the parametric one-step update to a generic second-stage estimator. We provide conditions under which the scaled update is asymptotically normal. We then introduce a two-stage Lasso procedure and show that the second-stage Lasso estimator satisfies the aforementioned conditions. Using these results, we construct asymptotically valid confidence intervals for the components of the second-stage regression coefficients. We complement our asymptotic theory with simulation studies, which demonstrate the performance of our method in finite samples. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 111
页数:33
相关论文
共 50 条
  • [31] Markov neighborhood regression for statistical inference of high-dimensional generalized linear models
    Sun, Lizhe
    Liang, Faming
    [J]. STATISTICS IN MEDICINE, 2022, 41 (20) : 4057 - 4078
  • [32] Inference for high-dimensional linear expectile regression with de-biasing method
    Li, Xiang
    Li, Yu-Ning
    Zhang, Li-Xin
    Zhao, Jun
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 198
  • [33] Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression
    Wu, Teng
    Narisetty, Naveen N.
    Yang, Yun
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 769 - 797
  • [34] High-dimensional robust inference for Cox regression models using desparsified Lasso
    Kong, Shengchun
    Yu, Zhuqing
    Zhang, Xianyang
    Cheng, Guang
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (03) : 1068 - 1095
  • [35] Regression on High-dimensional Inputs
    Kuleshov, Alexander
    Bernstein, Alexander
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 732 - 739
  • [36] Genomic data analysis using a two stage expectation propagation algorithm for analysis of sparse Bayesian high-dimensional instrumental variables regression
    Amini, Morteza
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (05) : 2351 - 2365
  • [37] Multivariate linear regression of high-dimensional fMRI data with multiple target variables
    Valente, Giancarlo
    Castellanos, Agustin Lage
    Vanacore, Gianluca
    Formisano, Elia
    [J]. HUMAN BRAIN MAPPING, 2014, 35 (05) : 2163 - 2177
  • [38] STATISTICAL-INFERENCE IN INSTRUMENTAL VARIABLES REGRESSION WITH I(1) PROCESSES
    PHILLIPS, PCB
    HANSEN, BE
    [J]. REVIEW OF ECONOMIC STUDIES, 1990, 57 (01): : 99 - 125
  • [39] Selection of variables and dimension reduction in high-dimensional non-parametric regression
    Bertin, Karine
    Lecue, Guillaume
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 1224 - 1241
  • [40] High-dimensional regression with gaussian mixtures and partially-latent response variables
    Antoine Deleforge
    Florence Forbes
    Radu Horaud
    [J]. Statistics and Computing, 2015, 25 : 893 - 911