Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review

被引:581
|
作者
Barelli, L. [1 ]
Bidini, G. [1 ]
Gallorini, F. [1 ]
Servili, S. [1 ]
机构
[1] Univ Perugia, Dept Ind Engn, I-06125 Perugia, Italy
关键词
hydrogen; SMR; CO2; capture; solid acceptor; SE-SMR;
D O I
10.1016/j.energy.2007.10.018
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the rapid development of industry, more and more waste gases are emitted into the atmosphere. In terms of total air emissions, CO2 is emitted in the greatest amount, accounting for 99wt% of the total air emissions, therefore contributing to global warming, the so-called "Greenhouse Effect". The recovery and disposal of CO2 from flue gas is currently the object of great international interest. Most of the CO2 comes from the combustion of fossil fuels in power generation, industrial boilers, residential and commercial heating, and transportation sectors. Consequently, in the last years' interest in hydrogen as an energy carrier has significantly increased both for vehicle fuelling and stationary energy production from fuel cells. The benefits of a hydrogen energy policy are the reduction of the greenhouse effect, principally due to the centralization of the emission sources. Moreover, an improvement to the environmental benefits can be achieved if hydrogen is produced from renewable sources, as biomass. The present paper provides an overview of the steam methane reforming (SMR) process and methodologies for performances improvement such as hydrogen removal, by selective permeation through a membrane or simultaneous reaction of the targeted molecule with a chemical acceptor, and equilibrium shift by the addition of a CO2 acceptor to the reactor. In particular, attention was focused on the sorption-enhanced steam methane reforming (SE-SMR) process in which sorbents are added in order to enhance the reactions and realize in situ CO2 separation. The major operating parameters of SE-SMR are described by the authors in order to project and then realize the innovative carbonation reactor developed in previous studies. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:554 / 570
页数:17
相关论文
共 50 条
  • [31] Sorption-enhanced hydrogen production: A review
    Harrison, Douglas P.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (17) : 6486 - 6501
  • [32] Investigation of sorption-enhanced hydrogen production by glycerol steam reforming in bubbling fluidized bed
    Yang, Shuliu
    Sun, Haoran
    Yang, Shiliang
    Hu, Jianhang
    Wang, Hua
    FUEL, 2023, 349
  • [33] Thermodynamic analysis of hydrogen production via sorption-enhanced steam methane reforming in a new class of variable volume batch-membrane reactor
    Anderson, David M.
    Kottke, Peter A.
    Fedorov, Andrei G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (31) : 17985 - 17997
  • [34] Application of multisection packing concept to sorption-enhanced steam methane reforming reaction for high-purity hydrogen production
    Lee, Chan Hyun
    Mun, Sungyong
    Lee, Ki Bong
    JOURNAL OF POWER SOURCES, 2015, 281 : 158 - 163
  • [35] Exergy analysis in intensification of sorption-enhanced steam methane reforming for clean hydrogen production: Comparative study and efficiency optimisation
    Davies, William George
    Babamohammadi, Shervan
    Yan, Yongliang
    Clough, Peter T.
    Soltani, Salman Masoudi
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 12
  • [36] Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review
    Iulianelli, Adolfo
    Liguori, Simona
    Wilcox, Jennifer
    Basile, Angelo
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2016, 58 (01): : 1 - 35
  • [37] Comparative numerical analysis for an efficient hydrogen production via a steam methane reforming with a packed-bed reactor, a membrane reactor, and a sorption-enhanced membrane reactor
    Lee, Hyunjun
    Kim, Ayeon
    Lee, Boreum
    Lim, Hankwon
    ENERGY CONVERSION AND MANAGEMENT, 2020, 213
  • [38] Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: a review
    Wang, Yunzhu
    Pan, Ziheng
    Zhao, Yi
    Luo, Yongming
    Gao, Xiaoya
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (11): : 5103 - 5113
  • [39] Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates
    Dang, Chengxiong
    Wu, Shijie
    Cao, Yonghai
    Wang, Hongjuan
    Peng, Feng
    Yu, Hao
    CHEMICAL ENGINEERING JOURNAL, 2019, 360 : 47 - 53
  • [40] Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane
    Reijers, HTJ
    Valster-Schiermeier, SEA
    Cobden, PD
    van den Brink, RW
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (08) : 2522 - 2530