Nonergodicity of reset geometric Brownian motion

被引:41
|
作者
Vinod, Deepak [1 ]
Cherstvy, Andrey G. [1 ,2 ]
Wang, Wei [3 ]
Metzler, Ralf [1 ]
Sokolov, Igor M. [2 ,4 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[2] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] IRIS Adlershof, D-12489 Berlin, Germany
关键词
PATH-DEPENDENT OPTIONS; LOOKBACK;
D O I
10.1103/PhysRevE.105.L012106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive. the ensemble-and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Exit probability for an integrated geometric Brownian motion
    Makasu, Cloud
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (11) : 1363 - 1365
  • [32] PROCESSES THAT CAN BE EMBEDDED IN A GEOMETRIC BROWNIAN MOTION
    Gushchin, A. A.
    Urusov, M. A.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2016, 60 (02) : 246 - 262
  • [33] Cooperation dynamics in networked geometric Brownian motion
    Stojkoski, Viktor
    Utkovski, Zoran
    Basnarkov, Lasko
    Kocarev, Ljupco
    [J]. PHYSICAL REVIEW E, 2019, 99 (06)
  • [34] Existence conditions of the optimal stopping time: The cases of geometric Brownian motion and arithmetic Brownian motion
    Takatsuka, H
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2004, 47 (03) : 145 - 162
  • [35] Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes
    Wang, Wei
    Cherstvy, Andrey G.
    Kantz, Holger
    Metzler, Ralf
    Sokolov, Igor M.
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [36] Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks
    Liang, Yingjie
    Wang, Wei
    Metzler, Ralf
    Cherstvy, Andrey G.
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [37] On the Geometric Brownian Motion assumption for financial time series
    Bongiorno, Enea G.
    Goia, Aldo
    Vieu, Philippe
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 59 - 65
  • [38] On the distribution of the time-integral of the geometric Brownian motion
    Nandori, Peter
    Pirjol, Dan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 402
  • [39] Geometric Brownian Motion with Tempered Stable Waiting Times
    Janusz Gajda
    Agnieszka Wyłomańska
    [J]. Journal of Statistical Physics, 2012, 148 : 296 - 305
  • [40] A geometric Brownian motion model for field degradation data
    Elsayed, EA
    Liao, HT
    [J]. EIGHTH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2003, : 55 - 59