Derivations cocentralizing multilinear polynomials on left ideals

被引:16
|
作者
Liu, Cheng-Kai [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
来源
MONATSHEFTE FUR MATHEMATIK | 2011年 / 162卷 / 03期
关键词
Derivation; PI; GPI; Prime ring; Differential identity; ENGEL CONDITION; GENERALIZED DERIVATIONS; CENTRALIZING MAPPINGS; RINGS;
D O I
10.1007/s00605-009-0179-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with extended centroid C, lambda a nonzero left ideal of R and f (X-1,..., X-t) a nonzero multilinear polynomial over C. Suppose that d and delta are derivations of R such that d(f(x(1),..., x(t))) f(x(1),..., x(t)) - f(x(1),..., x(t))delta(f(x(1),..., x(t))) is an element of C for all x(1),..., x(t) is an element of lambda Then either d = 0 and lambda delta(lambda) = 0 or lambda C = RCe for some idempotent e in the socle of RC and one of the following holds: (1) f (X-1,..., X-t) is central-valued on eRCe; (2) lambda(d + delta)(lambda) = 0 and f (X-1, ..., X-t)(2) is central-valued on eRCe; (3) char R = 2 and eRCe satisfies st (4)(X-1, X-2, X-3, X-4), the standard polynomial identity of degree 4.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 50 条