Generalized Skew Derivations Cocentralizing Multilinear Polynomials

被引:8
|
作者
Carini, Luisa [1 ]
De Filippis, Vincenzo [1 ]
Wei, Feng [2 ]
机构
[1] Univ Messina, Dept Math & Comp Sci, I-98166 Messina, Italy
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ENGEL CONDITION; DIFFERENTIAL IDENTITIES; AUTOMORPHISMS;
D O I
10.1007/s00009-015-0631-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime ring of characteristic different from 2, Q (r) be its right Martindale quotient ring and C be its extended centroid. Suppose that F, G are generalized skew derivations of R and is a non-central multilinear polynomial over C with n non-commuting variables. If F and G satisfy the following condition: for all , then we describe all possible forms of F and G.
引用
收藏
页码:2397 / 2424
页数:28
相关论文
共 50 条
  • [1] Generalized Skew Derivations Cocentralizing Multilinear Polynomials
    Luisa Carini
    Vincenzo De Filippis
    Feng Wei
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 2397 - 2424
  • [2] CENTRALIZERS OF GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS
    Albas, E.
    Argac, N.
    De Filippis, V.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (01) : 1 - 10
  • [3] Centralizers of generalized skew derivations on multilinear polynomials
    E. Albaş
    N. Argaç
    V. De Filippis
    [J]. Siberian Mathematical Journal, 2017, 58 : 1 - 10
  • [4] A NOTE ON GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS
    Raza, Mohd Arif
    Rehman, Nadeem Ur
    Gotmare, A. R.
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (1-2): : 73 - 81
  • [5] Derivations cocentralizing multilinear polynomials on left ideals
    Liu, Cheng-Kai
    [J]. MONATSHEFTE FUR MATHEMATIK, 2011, 162 (03): : 297 - 311
  • [6] Derivations cocentralizing multilinear polynomials on left ideals
    Cheng-Kai Liu
    [J]. Monatshefte für Mathematik, 2011, 162 : 297 - 311
  • [7] GENERALIZED DERIVATIONS COCENTRALIZING POLYNOMIALS
    Chen, Hung-Yuan
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (07) : 2783 - 2798
  • [8] GENERALIZED SKEW DERIVATIONS WITH INVERTIBLE VALUES ON MULTILINEAR POLYNOMIALS
    Demir, C.
    Albas, E.
    Argac, N.
    De Filippis, V.
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (11) : 4042 - 4059
  • [9] b-GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS
    Prajapati, Balchand
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (01): : 21 - 38
  • [10] Annihilators and centralizers of generalized skew derivations on multilinear polynomials
    Yarbil N.B.
    De Filippis V.
    Scudo G.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (3): : 573 - 595