Prediction of meat quality traits in Nelore cattle by near-infrared reflectance spectroscopy

被引:15
|
作者
Braga Magalhaes, Ana Fabricia [1 ]
de Almeida Teixeira, Gustavo Henrique [1 ]
Herrera Rios, Ana Cristina [1 ]
dos Santos Silva, Danielly Beraldo [1 ]
Macedo Mota, Lucio Flavio [1 ]
Magalhaes Muniz, Maria Malane [1 ]
Medeiros de Morais, Camilo de Lelis [2 ,3 ]
Gomes de Lima, Kassio Michell [2 ]
Cunha Junior, Luis Carlos [1 ]
Baldi, Fernando [1 ]
Carvalheiro, Roberto [1 ]
de Oliveira, Henrique Nunes [1 ]
Loyola Chardulo, Luis Artur [4 ]
de Albuquerque, Lucia Galvao [1 ]
机构
[1] Sao Paulo State Univ Unesp, Dept Anim Sci, Sch Agr & Veterinarian Sci, BR-14884900 Jaboticabal, SP, Brazil
[2] Univ Fed Rio Grande do Norte, Inst Chem Biol Chem & Chemometr, BR-59072970 Natal, RN, Brazil
[3] Univ Cent Lancashire, Sch Pharm & Biomed Sci, Preston PR1 2HE, Lancs, England
[4] Sao Paulo State Univ Unesp, Coll Vet & Anim Sci, Dept Anim Nutr & Improvement, BR-18618970 Botucatu, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
marbling; meat color; preprocessing techniques; shear force; CHEMICAL-COMPOSITION; NIR SPECTROSCOPY; BEEF TENDERNESS; NELLORE BULLS; SHEAR FORCE; CONSUMER; SPECTRA; CARCASS; STEAKS; ABILITY;
D O I
10.1093/jas/sky284
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The main definition for meat quality should include factors that affect consumer appreciation of the product. Physical laboratory analyses are necessary to identify factors that affect meat quality and specific equipment is used for this purpose, which is expensive and destructive, and the analyses are usually time consuming. An alternative method to performing several beef analyses is near-infrared reflectance spectroscopy (NIRS), which permits to reduce costs and to obtain faster, simpler, and nondestructive measurements. The objective of this study was to evaluate the feasibility of NIRS to predict shear force [Warner-Bratzler shear force (WBSF)], marbling, and color (* a = redness; b* = yellowness; and L* = lightness) in meat samples of uncastrated male Nelore cattle, that were approximately 2-yr-old. Samples of longissimus thoracis (n = 644) were collected and spectra were obtained prior to meat quality analysis. Multivariate calibration was performed by partial least squares regression. Several preprocessing techniques were evaluated alone and in combination: raw data, reduction of spectral range, multiplicative scatter correction, and 1st derivative. Accuracies of the calibration models were evaluated using the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), coefficient of determination in the calibration ((RC)-C-2), and prediction ((RP)-P-2) groups. Among the different preprocessing techniques, the reduction of spectral range provided the best prediction accuracy for all traits. The NIRS showed a better performance to predict WBSF (RMSEP = 1.42 kg, (RP)-P-2 = 0.40) and b* color (RMSEP = 1.21, (RP)-P-2 = 0.44), while its ability to accurately predict L* (RMSEP = 1.98, (RP)-P-2 = 0.16) and a* (RMSEP = 1.42, (RP)-P-2 = 0.17) was limited. NIRS was unsuitable to predict subjective meat quality traits such as marbling in Nelore cattle.
引用
收藏
页码:4229 / 4237
页数:9
相关论文
共 50 条
  • [21] Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy
    Malin, SF
    Ruchti, TL
    Blank, TB
    Thennadil, SN
    Monfre, SL
    CLINICAL CHEMISTRY, 1999, 45 (09) : 1651 - 1658
  • [22] Prediction of wheat milling characteristics by near-infrared reflectance spectroscopy
    Blazek, J
    Jirsa, O
    Hrusková, M
    CZECH JOURNAL OF FOOD SCIENCES, 2005, 23 (04) : 145 - 151
  • [23] NEAR-INFRARED REFLECTANCE SPECTROSCOPY ANALYSIS OF DIGESTIBILITY TRAITS OF MAIZE STOVER
    ZIMMER, E
    GURRATH, PA
    PAUL, C
    DHILLON, BS
    POLLMER, WG
    KLEIN, D
    EUPHYTICA, 1990, 48 (01) : 73 - 81
  • [24] Evaluation of seed traits in alfalfa and soybean with near-infrared reflectance spectroscopy
    Sekharan, S
    Kephart, KD
    Turnipseed, EB
    AMERICAN FORAGE AND GRASSLAND COUNCIL, VOL 9, PROCEEDINGS, 2000, 9 : 328 - 328
  • [25] Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy
    Mamani-Linares, L. W.
    Gallo, C.
    Alomar, D.
    MEAT SCIENCE, 2012, 90 (02) : 378 - 385
  • [26] The application of near-infrared reflectance spectroscopy in seeds quality certification
    Ren Wei-bo
    Han Jian-guo
    Zhang Yun-wei
    Guo Hui-qin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28 (03) : 555 - 558
  • [27] APPLICATION OF NEAR-INFRARED REFLECTANCE SPECTROSCOPY TO THE QUALITY ASSURANCE OF SURFACTANTS
    WALLING, PL
    DABNEY, JM
    JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, 1986, 37 (06): : 445 - 459
  • [28] FLOUR QUALITY-CONTROL BY NEAR-INFRARED REFLECTANCE SPECTROSCOPY
    THOMPSON, BN
    WILLIAMS, PC
    MCLAY, GW
    KENT, W
    WETZEL, D
    CEREAL FOODS WORLD, 1979, 24 (09) : 460 - 460
  • [29] The application of near-infrared reflectance spectroscopy in seeds quality certification
    Institute of Grassland Science, China Agricultural University, Beijing 100094, China
    不详
    不详
    Guang Pu Xue Yu Guang Pu Fen Xi, 2008, 3 (555-558):
  • [30] PREDICTION OF FORAGE QUALITY USING NEAR-INFRARED REFLECTANCE SPECTROSCOPY ON ESOPHAGEAL FISTULA SAMPLES FROM CATTLE ON MOUNTAIN-RANGE
    HOLECHEK, JL
    SHENK, JS
    VAVRA, M
    ARTHUN, D
    JOURNAL OF ANIMAL SCIENCE, 1982, 55 (04) : 971 - 975