Voice Pathology Detection with MDVP Parameters Using Arabic Voice Pathology Database

被引:0
|
作者
Al-nasheri, Ahmed [1 ]
Ali, Zulfiqar [1 ,3 ]
Muhammad, Ghulam [1 ]
Alsulaiman, Mansour [1 ]
Almalki, Khalid H. [2 ]
Mesallam, Tamer A. [2 ]
Farahat, Mohamed [2 ]
机构
[1] King Saud Univ, Digital Speech Proc Grp, Dept Comp Engn, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
[2] King Saud Univ, Coll Med, Dept Otolaryngol, Riyadh 11543, Saudi Arabia
[3] Univ Tekhnol PETRONAS, Dept Elect & Elect Engn, CISIR, Tronoh 31750, Perak, Malaysia
关键词
voice pathology detection; AVPD; MDVP; SVM; MEEI;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates the use of Multi-Dimensional Voice Program (MDVP) parameters to automatically detect voice pathology in Arabic voice pathology database (AVPD). MDVP parameters are very popular among the physician / clinician to detect voice pathology; however, MDVP is a commercial software. AVPD is a newly developed speech database designed to suit a wide range of experiments in the field of automatic voice pathology detection, classification, and automatic speech recognition. This paper is the first step to evaluate MDVP parameters in AVPD using sustained vowel /a/. The experimental results demonstrate that some of the acoustic features show an excellent ability to discriminate between normal and pathological voices. The overall best accuracy is 81.33% by using SVM classifier.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Voice Pathology Detection and Classification Using Convolutional Neural Network Model
    Mohammed, Mazin Abed
    Abdulkareem, Karrar Hameed
    Mostafa, Salama A.
    Abd Ghani, Mohd Khanapi
    Maashi, Mashael S.
    Garcia-Zapirain, Begonya
    Oleagordia, Ibon
    Alhakami, Hosam
    AL-Dhief, Fahad Taha
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [32] Voice Pathology Detection Using Modulation Spectrum-Optimized Metrics
    Moro-Velazquez, Laureano
    Andres Gomez-Garcia, Jorge
    Ignacio Godino-Llorente, Juan
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2016, 4
  • [33] Objective analysis of voice quality in patients with thyroid pathology voice quality in thyroid pathology
    Leon Gomez, Nieves Maria
    Delgado Hernandez, Jonathan
    Luis Hernandez, Jorge
    Artazkoz del Toro, Juan Jose
    [J]. CLINICAL OTOLARYNGOLOGY, 2022, 47 (01) : 81 - 87
  • [34] Deep Learning Approach for Voice Pathology Detection and Classification
    Mittal, Vikas
    Sharma, R. K.
    [J]. INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2021, 16 (04)
  • [35] DYNAMIC FEATURE EXTRACTION: AN APPLICATION TO VOICE PATHOLOGY DETECTION
    Daza-Santacoloma, Genaro
    Arias-Londono, Julian D.
    Godino-Llorente, Juan I.
    Saenz-Lechon, Nicolas
    Osma-Ruiz, Victor
    Castellanos-Dominguez, German
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2009, 15 (04): : 667 - 682
  • [36] A comparison of data augmentation methods in voice pathology detection
    Javanmardi, Farhad
    Kadiri, Sudarsana Reddy
    Alku, Paavo
    [J]. COMPUTER SPEECH AND LANGUAGE, 2023, 83
  • [37] Comparative Analysis of CNN and RNN for Voice Pathology Detection
    Syed, Sidra Abid
    Rashid, Munaf
    Hussain, Samreen
    Zahid, Hira
    [J]. BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [38] PHASE-BASED INFORMATION FOR VOICE PATHOLOGY DETECTION
    Drugman, Thomas
    Dubuisson, Thomas
    Dutoit, Thierry
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4612 - 4615
  • [39] Spectrum analysis of vocalization application for voice pathology detection
    Fetisova, O. G.
    Lamtyugin, D. V.
    Makukha, V. K.
    Voronin, E. M.
    [J]. EUROCON 2007: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOLS 1-6, 2007, : 1405 - 1408
  • [40] Complex Networks: Application to Pathology Detection in Voice Signals
    Sebastian Hurtado-Jaramillo, Juan
    Guarin, Diego L.
    Orozco, Alvaro
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4229 - 4232