Voice Pathology Detection with MDVP Parameters Using Arabic Voice Pathology Database

被引:0
|
作者
Al-nasheri, Ahmed [1 ]
Ali, Zulfiqar [1 ,3 ]
Muhammad, Ghulam [1 ]
Alsulaiman, Mansour [1 ]
Almalki, Khalid H. [2 ]
Mesallam, Tamer A. [2 ]
Farahat, Mohamed [2 ]
机构
[1] King Saud Univ, Digital Speech Proc Grp, Dept Comp Engn, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
[2] King Saud Univ, Coll Med, Dept Otolaryngol, Riyadh 11543, Saudi Arabia
[3] Univ Tekhnol PETRONAS, Dept Elect & Elect Engn, CISIR, Tronoh 31750, Perak, Malaysia
关键词
voice pathology detection; AVPD; MDVP; SVM; MEEI;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates the use of Multi-Dimensional Voice Program (MDVP) parameters to automatically detect voice pathology in Arabic voice pathology database (AVPD). MDVP parameters are very popular among the physician / clinician to detect voice pathology; however, MDVP is a commercial software. AVPD is a newly developed speech database designed to suit a wide range of experiments in the field of automatic voice pathology detection, classification, and automatic speech recognition. This paper is the first step to evaluate MDVP parameters in AVPD using sustained vowel /a/. The experimental results demonstrate that some of the acoustic features show an excellent ability to discriminate between normal and pathological voices. The overall best accuracy is 81.33% by using SVM classifier.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] An Investigation of MDVP Parameters for Voice Pathology Detection on Three Different Databases
    Al-nasheri, Ahmed
    Ali, Zulfigar
    Muhammad, Ghulam
    Alsulaiman, Mansour
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 2952 - 2956
  • [2] Spectral perturbation parameters for voice pathology detection
    Gómez, P
    Díaz, F
    Lázaro, C
    Murphy, K
    Martínez, R
    Rodellar, V
    Alvarez, A
    [J]. ISSCS 2005: International Symposium on Signals, Circuits and Systems, Vols 1 and 2, Proceedings, 2005, : 299 - 302
  • [3] Voice Pathology Detection on the Saarbrucken Voice Database with Calibration and Fusion of Scores Using MultiFocal Toolkit
    Martinez, David
    Lleida, Eduardo
    Ortega, Alfonso
    Miguel, Antonio
    Villalba, Jesus
    [J]. ADVANCES IN SPEECH AND LANGUAGE TECHNOLOGIES FOR IBERIAN LANGUAGES, 2012, 328 : 99 - +
  • [4] The accuracy of an Online Sequential Extreme Learning Machine in detecting voice pathology using the Malaysian Voice Pathology Database
    Nur Ain Nabila Za’im
    Fahad Taha AL-Dhief
    Mawaddah Azman
    Majid Razaq Mohamed Alsemawi
    Nurul Mu′azzah Abdul Latiff
    Marina Mat Baki
    [J]. Journal of Otolaryngology - Head & Neck Surgery, 52
  • [5] The accuracy of an Online Sequential Extreme Learning Machine in detecting voice pathology using the Malaysian Voice Pathology Database
    Za'im, Nur Ain Nabila
    AL-Dhief, Fahad Taha
    Azman, Mawaddah
    Alsemawi, Majid Razaq Mohamed
    Abdul Latiff, Nurul Mu'azzah
    Baki, Marina Mat
    [J]. JOURNAL OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2023, 52 (01)
  • [6] Voice Pathology Detection using Multiresolution Technique
    Muhammad, Ghulam
    Alsulaiman, Mansour
    Mahmood, Awais
    Almojali, Malak
    Abdelkader, Bencherif Mohamed
    [J]. UKSIM-AMSS EIGHTH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS 2014), 2014, : 185 - 189
  • [7] Automated Detection of Voice Disorder in the Saarbrucken Voice Database: Effects of Pathology Subset and Audio Materials
    Huckvale, Mark
    Buciuleac, Catinca
    [J]. INTERSPEECH 2021, 2021, : 1399 - 1403
  • [8] Score Level versus Audio Level Fusion for Voice Pathology Detection on the Saarbrucken Voice Database
    Martinez, David
    Lleida, Eduardo
    Ortega, Alfonso
    Miguel, Antonio
    [J]. ADVANCES IN SPEECH AND LANGUAGE TECHNOLOGIES FOR IBERIAN LANGUAGES, 2012, 328 : 110 - +
  • [9] Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms
    Mesallam, Tamer A.
    Farahat, Mohamed
    Malki, Khalid H.
    Alsulaiman, Mansour
    Ali, Zulfiqar
    Al-nasheri, Ahmed
    Muhammad, Ghulam
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
  • [10] Voice pathology detection by using the deep network architecture
    Ankishan, Haydar
    Inam, Sitki Cagdas
    [J]. APPLIED SOFT COMPUTING, 2021, 106