Life cycle strengthening of high-strength steels by nanosecond laser shock

被引:25
|
作者
Bai, Yongtao [1 ,3 ]
Wang, Hao [2 ]
Wang, Shuhong [1 ]
Huang, Yihui [4 ]
Chen, Yao [5 ,6 ]
Zhang, Wenwu [4 ]
Ostendorf, Andreas
Zhou, Xuhong [1 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400044, Peoples R China
[2] Ruhr Univ Bochum, Chair Appl Laser Technol, Univ Str 150, D-44801 Bochum, Germany
[3] Leibniz Univ Hannover, Inst Risk & Reliabil, Callinstr 34, D-30167 Hannover, Germany
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[5] Southeast Univ, Minist Educ, Key Lab Concrete & Prestressed Concrete Struct, Nanjing 211189, Peoples R China
[6] Southeast Univ, Natl Prestress Engn Res Ctr, Nanjing 211189, Peoples R China
关键词
High-strength steel; Laser shock peening; Microhardness; Residual stress; Fatigue life; CORROSION BEHAVIOR; FATIGUE LIFE; ALLOY; MICROSTRUCTURE;
D O I
10.1016/j.apsusc.2021.151118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser shock peening is a surface treatment technology inducing high-pressure shock waves on metallic materials and structures. In this study, the life cycle performance improvement in high-strength steel by nanosecond laser shock peening is investigated. It is found that microstructures formed by laser shock peening lead to higher microhardness, corrosion resistance, and fatigue life, which are significantly beneficial for preventing life cycle failure of mega-scale engineering structures in critical environments. The residual stress is also measured on the surface of samples, which shows that the compressive residual stress can be found in the treated area.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes
    Sun, C.
    Xie, J.
    Zhao, A.
    Lei, Z.
    Hong, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2012, 35 (07) : 638 - 647
  • [42] A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime
    Chengqi Sun
    Xiaolong Liu
    Youshi Hong
    Acta Mechanica Sinica, 2015, 31 : 383 - 391
  • [43] High-cycle rotating bending fatigue property in very long-life regime of high-strength steels
    Ochi, Y
    Matsumura, T
    Masaki, K
    Yoshida, S
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2002, 25 (8-9) : 823 - 830
  • [44] A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime
    Sun, Chengqi
    Liu, Xiaolong
    Hong, Youshi
    ACTA MECHANICA SINICA, 2015, 31 (03) : 383 - 391
  • [45] A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime
    Chengqi Sun
    Xiaolong Liu
    Youshi Hong
    Acta Mechanica Sinica, 2015, 31 (03) : 383 - 391
  • [46] Dependence of fatigue strength on inclusion size for high-strength steels in very high cycle fatigue regime
    Liu, Y. B.
    Yang, Z. G.
    Li, Y. D.
    Chen, S. M.
    Li, S. X.
    Hui, W. J.
    Weng, Y. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 517 (1-2): : 180 - 184
  • [47] FATIGUE PROPERTIES OF LASER-BEAM WELDMENTS ON HIGH-STRENGTH STEELS
    RING, M
    DAHL, W
    STEEL RESEARCH, 1994, 65 (11): : 505 - 510
  • [48] Low-cycle fatigue parameters and fatigue life estimation of high-strength steels with artificial neural networks
    Soyer, Mehmet Alperen
    Kalayci, Can Berk
    Karakas, Ozler
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (12) : 3764 - 3785
  • [49] Fatigue life of welded high-strength steels under Gaussian loads
    Moeller, Benjamin
    Wagener, Rainer
    Hrabowski, Jennifer
    Ummenhofer, Thomas
    Melz, Tobias
    3RD INTERNATIONAL CONFERENCE ON MATERIAL AND COMPONENT PERFORMANCE UNDER VARIABLE AMPLITUDE LOADING, VAL 2015, 2015, 101 : 293 - 301
  • [50] Creep rupture life and design factors for high-strength ferritic steels
    Masuyama, Fujimitsu
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2007, 84 (1-2) : 53 - 61