Experimental study on the temperature longitudinal distribution induced by a branched tunnel fire

被引:26
|
作者
Huang, Youbo [1 ]
Li, Yanfeng [2 ]
Li, Jiaxin [2 ]
Wu, Ke [3 ]
Li, Haihang [4 ]
Zhu, Kai [4 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Safety Engn, Chongqing 401331, Peoples R China
[2] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Energy Eff, Beijing 100124, Peoples R China
[3] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310012, Peoples R China
[4] China Jiliang Univ, Safety Engn Inst, Coll Qual & Safety Engn, Hangzhou 310018, Peoples R China
关键词
Tunnel fire; Bifurcation angle; Temperature distribution; Longitudinal ventilation; Gas burner; SMOKE TEMPERATURE; MAXIMUM TEMPERATURE; FLOW; VENTILATION; PRESSURE; PROFILE; LENGTH; DECAY; FIELD; AREA;
D O I
10.1016/j.ijthermalsci.2021.107175
中图分类号
O414.1 [热力学];
学科分类号
摘要
Temperature rise induced by tunnel fire is a key factor injuring persons and destroying the tunnel lining structure as well as the facilities. In order to better comprehend the temperature distribution induced by fire in branched tunnel, a series of reduced scale experiments with different longitudinal ventilation velocity and bifurcation angles were conducted to investigate the temperature longitudinal decay in mainline tunnel and ramp in this paper. The heat release rate varied from 1.72 kW to 6.04 kW corresponding to 3.07 MW-10.8 MW in full scale. Three bifurcation angles of 5 degrees, 10 degrees, and 15 degrees were considered to investigate the effect of bifurcation angle on temperature longitudinal distribution in branched tunnel. Results show that the bifurcation angle influences temperature distribution between fire source two sides due to the asymmetric air entrainment. The increasing of heat release rate results in the higher temperature under natural ventilation. The ventilation velocity had a greater enhancing effect on the temperature rise in mainline tunnel due to smoke accumulation effect at downstream of fire source. The exponential correlation is proposed to predict the longitudinal temperature beneath the tunnel ceiling not only in mainline tunnel but also in ramp by taking the bifurcation angle into consideration.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Study on the longitudinal ceiling temperature distribution induced by double pool fires in a tunnel
    Jia, You
    Fan, Xueliang
    Zhao, Xuejuan
    Deng, Yelin
    Zhu, Xinlei
    Zhao, Weifeng
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 168
  • [22] Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling
    Hu, L. H.
    Huo, R.
    Wang, H. B.
    Li, Y. Z.
    Yang, R. X.
    BUILDING AND ENVIRONMENT, 2007, 42 (11) : 3905 - 3915
  • [23] Experimental analysis of the effect of the ramp slopes on the maximum exceedance temperature in a branched tunnel fire
    Li, Jiaxin
    Li, Yanfeng
    Li, Junmei
    Zhong, Hua
    Zhao, Jianlong
    Xu, Desheng
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2023, 131
  • [24] Experimental investigation of the thermal back-layering length in a branched tunnel fire under longitudinal ventilation
    Huang, Youbo
    Li, Yanfeng
    Li, Jiaxin
    Wu, Ke
    Li, Haihang
    Zhu, Kai
    Li, Junmei
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 173
  • [25] Numerical study on transverse temperature distribution of fire zone in metro tunnel fire
    Gu, Si-nian
    Zhu, Guo-qing
    Zan, Wen-xin
    2015 INTERNATIONAL CONFERENCE ON PERFORMANCE-BASED FIRE AND FIRE PROTECTION ENGINEERING (ICPFFPE 2015), 2016, 135 : 376 - 383
  • [26] Study on Longitudinal Temperature Decay in Cable Tunnel Near Wall Fire
    Bai, Zhenpeng
    Zhao, Xiaohan
    Qin, Hengjie
    Song, Huaitao
    Yao, Haowei
    IAENG International Journal of Applied Mathematics, 2024, 54 (08) : 1602 - 1607
  • [27] Experimental investigation of fire temperature distribution and ceiling temperature prediction in closed utility tunnel
    Liu, Hao-nan
    Zhu, Guo-qing
    Pan, Rong-liang
    Yu, Miao-miao
    Liang, Zhen-huan
    CASE STUDIES IN THERMAL ENGINEERING, 2019, 14
  • [28] Experimental investigation on the smoke back-layering length in a branched tunnel fire considering different longitudinal ventilations and fire locations
    Yang, Xiaolong
    Luo, Yueyang
    Li, Zhisheng
    Guo, Hanwen
    Zhang, Yuchun
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 28
  • [29] Dynamic Simulation on Longitudinal Temperature Distribution of Tunnel Ceiling Based on Moving Fire Source
    Deng, Jun
    Li, Shirong
    Yan, Zhengxin
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-4, 2013, 610-613 : 752 - +
  • [30] Study on the maximum ceiling temperature and downstream temperature distribution in inclined tunnel fire
    Sun, Chaopeng
    Weng, Miaocheng
    Liu, Fang
    Yang, Haoran
    Zhu, Xinyi
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 153