High-precision calculation of the equation of state and crystallographic phase stability for aluminum

被引:88
|
作者
Boettger, JC
Trickey, SB
机构
[1] UNIV FLORIDA, DEPT PHYS, QUANTUM THEORY PROJECT, GAINESVILLE, FL 32611 USA
[2] UNIV FLORIDA, DEPT CHEM, GAINESVILLE, FL 32611 USA
来源
PHYSICAL REVIEW B | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevB.53.3007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-precision, all-electron, full-potential, local-density approximation (LDA) calculations are used to determine the static lattice equation of state (EOS) and crystalline phase stability of Al to 1 TPa. The low-pressure properties found here are consistent with the results of other nonrelativistic LDA calculations, but differ significantly from the results of relativistic LDA or gradient-dependent approximation calculations. The theoretical 300-K isotherm for fcc Al, obtained by adding phonon effects to the static lattice EOS, is in reasonable agreement with room temperature data up to 220 GPa. The predicted static-lattice phase sequence for Al is fcc-->hcp-->bcc with the transitions occurring at 205+/-20 GPa and 565+/-60 GPa. Estimation of the possible impact of phonons on the fcc-->hcp transition produces a fairly firm upper bound of 290 GPa (282) on the room-temperature (zero temperature) fcc-->hcp transition pressure. This result suggests that a recent diamond-anvil-cell experiment came very close to achieving the fcc-->hcp transition.
引用
收藏
页码:3007 / 3012
页数:6
相关论文
共 50 条
  • [31] Nelkin scaling for the Burgers equation and the role of high-precision calculations
    Chakraborty, Sagar
    Frisch, Uriel
    Pauls, Walter
    Ray, Samriddhi Sankar
    [J]. PHYSICAL REVIEW E, 2012, 85 (01):
  • [32] HIGH-PRECISION SLICING FOR SOLID-STATE DEVICES
    KACHAJIAN, GS
    [J]. INDUSTRIAL DIAMOND REVIEW, 1982, 42 (02): : 58 - 60
  • [33] High-precision nonrelativistic polarizabilities of the nS state of helium
    Xiang, Shao-Hui
    Ma, Ke-Jie
    Qia, Hao-Xue
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (27):
  • [34] Derivative Properties from High-Precision Equations of State
    Haghbakhsh, Reza
    Konttorp, Morten
    Raeissi, Sona
    Peters, Cor J.
    O'Connell, John P.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (49): : 14397 - 14409
  • [35] Parallel cross interpolation for high-precision calculation of high-dimensional integrals
    Dolgov, Sergey
    Savostyanov, Dmitry
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2020, 246
  • [36] High-precision shock equation of state measurements for metallic fluid carbon between 15 and 20 Mbar
    Millot, Marius
    Sterne, Philip A.
    Eggert, Jon H.
    Hamel, Sebastien
    Marshall, Michelle C.
    Celliers, Peter M.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (10)
  • [37] High-precision calculation and experiments on the thermal blooming of high-energy lasers
    Zhang, Qi
    Hu, Qili
    Wang, Hongyan
    Hu, Ming
    Xu, Xingyu
    Wu, Jingjing
    Hu, Lifa
    [J]. OPTICS EXPRESS, 2023, 31 (16): : 25900 - 25914
  • [38] High-precision equation of state data for TiO2: A structural analog of SiO2
    Duwal, Sakun
    McCoy, Chad A.
    Weck, Philippe F.
    Kalita, Patricia
    Hanshaw, Heath L.
    Cochrane, Kyle
    Ao, Tommy
    Root, Seth
    [J]. PHYSICAL REVIEW B, 2020, 102 (02)
  • [39] Equation of State for Aluminum at High Pressures
    Khishchenko, K. V.
    [J]. HIGH TEMPERATURE, 2023, 61 (03) : 440 - 443
  • [40] Equation of State for Aluminum at High Pressures
    K. V. Khishchenko
    [J]. High Temperature, 2023, 61 : 440 - 443