Impact of ECG Signal Preprocessing and Filtering on Arrhythmia Classification Using Machine Learning Techniques

被引:0
|
作者
Ayala-Cucas, Hermes Andres [1 ]
Mora-Piscal, Edison Alexander [1 ]
Mayorca-Torres, Dagoberto [1 ,3 ]
Peluffo-Ordonez, Diego Hernan [2 ]
Leon-Salas, Alejandro J. [3 ]
机构
[1] Univ Mariana, Grp Invest Ingn Mecatron, Pasto, Colombia
[2] Mohammed VI Polytech Univ, Modeling Simulat & Data Anal MSDA Res Program, Ben Guerir, Morocco
[3] Univ Granada, Dept Lenguajes & Sistemas Informat, C-Periodista Daniel Saucedo Aranda S-N, Granada 18071, Spain
关键词
Electrocardiogram (ECG); Cardiac arrhythmia; Feature extraction; Supervised machine learning; Performance measures; RECOGNITION; FEATURES;
D O I
10.1007/978-3-031-22419-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardiac arrhythmias are heartbeat disorders in which the electrical impulses that coordinate the cardiac cycle malfunction. The heart's electrical activity is recorded using electrocardiography (ECG), a non-invasive method that helps diagnose several cardiovascular diseases. However, interpretation of ECG signals can be difficult due to the presence of noise, the irregularity of the heartbeat, and their nonstationary nature. Hence, the use of computational systems is required to support the diagnosis of cardiac arrhythmias. The main challenge in developing AI-assisted ECG systems is achieving accuracies suitable for application in clinical settings. Therefore, this paper introduces a software tool for classifying cardiac arrhythmias in ECG recordings that uses filtering, segmentation, and feature extraction of the QRS interval. We use the MIT-BIH Arrhythmia Database, which has 48 records of five different types of arrhythmias. We evaluate the data using supervised machine learning techniques such as k-Nearest Neighbors (KNN), Random Forest (RF), Multilayer Perceptron (MLP), and the Naive Bayesian classifier. This paper shows the impact of selecting and employing filtering and feature extraction methods on the performance of supervised machine learning algorithms compared with benchmark approaches.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 50 条
  • [31] Arrhythmia detection and classification using ECG and PPG techniques: a review
    Neha
    Sardana, H. K.
    Kanwade, R.
    Tewary, S.
    [J]. PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2021, 44 (04) : 1027 - 1048
  • [32] ECG Arrhythmia Detection and Classification Using Relevance Vector Machine
    Gayathri, S.
    Suchetha, M.
    Latha, V.
    [J]. INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1333 - 1339
  • [33] Heart Rate Classification Using ECG Signal Processing and Machine Learning Methods
    Papadogiorgaki, Maria
    Venianaki, Maria
    Charonyktakis, Paulos
    Antonakakis, Marios
    Tsamardinos, Ioannis
    Zervakis, Michalis E.
    Sakkalis, Vangelis
    [J]. 2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [34] Application of Federated Learning Techniques for Arrhythmia Classification Using 12-Lead ECG Signals
    Gutierrez, Daniel Mauricio Jimenez
    Hassan, Hafiz Muuhammad
    Landi, Lorella
    Vitaletti, Andrea
    Chatzigiannakis, Ioannis
    [J]. ALGORITHMIC ASPECTS OF CLOUD COMPUTING, ALGOCLOUD 2023, 2024, 14053 : 38 - 65
  • [35] ECG signal classification and arrhythmia detection using ELM-RNN
    Sumanta Kuila
    Namrata Dhanda
    Subhankar Joardar
    [J]. Multimedia Tools and Applications, 2022, 81 : 25233 - 25249
  • [36] ECG signal classification to detect heart arrhythmia using ELM and CNN
    Kuila, Sumanta
    Dhanda, Namrata
    Joardar, Subhankar
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29857 - 29881
  • [37] ECG signal classification and arrhythmia detection using ELM-RNN
    Kuila, Sumanta
    Dhanda, Namrata
    Joardar, Subhankar
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (18) : 25233 - 25249
  • [38] Classification of arrhythmia's ECG signal using cascade transparent classifier
    Setiawan, Noor Akhmad
    Nugroho, Hanung Adi
    Persada, Anugerah Galang
    Yuwono, Tito
    Prasojo, Ipin
    Rahmadi, Ridho
    Wijaya, Adi
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 1015 - 1025
  • [39] ECG signal classification to detect heart arrhythmia using ELM and CNN
    Sumanta Kuila
    Namrata Dhanda
    Subhankar Joardar
    [J]. Multimedia Tools and Applications, 2023, 82 : 29857 - 29881
  • [40] Deep Learning Based Patient-Specific Classification of Arrhythmia on ECG signal
    Zhao, Wei
    Hu, Jing
    Jia, Dongya
    Wang, Hongmei
    Li, Zhenqi
    Yan, Cong
    You, Tianyuan
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1500 - 1503